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Abstract

Workflow management systems (WfMS) provide con-
venient ways of visualization, analysis and automation
of work processes. We wish to improve the quality of
workflow systems by applying formal verification tech-
niques. We present an automatic translator for work-
flow models designed as Petri net models to a state
space, and we develop a tableau based model checking
algorithm to verify properties of that model. Tableau
based theorem provers are both computationally and
resource intensive. Introducing a timed and tempo-
ral logic increases the complexity. To cope with this
problem we discuss a mechanism to distribute the ver-
ification procedure among multiple processors.

Background

Workflow

A workflow can be depicted as a sequence of tasks. It
gives a virtual representation of an actual work.
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Figure: A simple workflow

Workflow Management Systems (WfMS)

WEMS provide convenient ways of visualization,
analysis and automation of business processes to
identify and correct potential errors in a system.

= Properly verified workflows ensure better systems.

= Safety critical systems like health care must ensure an error free
workflow execution to ensure the safety of the patients.

= Although time constraints plays important role in workflow
execution, present WfMS cannot model time.

Petri Net

Having a strong mathematical foundation, Petri nets
are a popular tool to model workflow systems in the
industry. A Petri net consists of the following:

® A finite set of places
® A finite set of transitions

® A finite set of directed arcs. An arc can only connect a place
and a transition.

O A finite number of tokens (representing resources) in places.
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Figure: A simple Perti net workflow

A transition can only be enabled when all the input
places have tokens. An enabled transition may fire (if
there is no other contraints) by consuming a token
from each of its input places and produces a token in
each output place.

Extended formalisms of Petri nets support modelling
time. However Petri net tools provide an implicit
representation of the system and have limited
verification capability.

Formal Verification

The process of showing that a formal design specifica-
tion (model) satisfies its formal requirement specifications
(properties).

Formal verification uses mathematical techniques to en-
sure the correctness of a system design. Various formal
verification approaches include:

« Interactive theorem proving: It is the most powerful
verification method. But it needs logicians to guide the proof
procedure.

» Automated theorem proving: It does not require
human interactions. The implementation of ATP is very complex.
It provides better assurance than model checking.

« Model checking: In principle it is automatic. However, the
application is limited to finite state transition systems because of
the state explosion problem.
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High Performance Computing

» Divides computation tasks into smaller pieces and
distributes them to multiple processors to process
concurrently.

= Reduces time to completion.

= Increases available memory.

What We Need

= An explicit model of the system showing all
possible states.

= A system specification language to express timed
properties.

« A strong proof procedure to verify properties of the
system.

Timed temporal logics permit the explicit reference to
time in order to specify quantitative properties, needed
by safety critical systems. Our property specification lan-
guage is timed CTL logic, which in Backus-Naur form is:
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where p is an atomic formula, n is an integer that specifies
an upper bound on the time, AG, AF, EG, EF, AX, EX
are the CTL operators.

» Manual translation of a large Petri net model to a
state space Is very time consuming.

= Timed temporal logic increases the computational
complexity.

« Model checking suffers from the state explosion
problem.

« Fully automatic theorem proving is quite tedious
and impractical for large workflow systems.

= Even a simple workflow can have many possible
execution paths and may results in a very large
state space, which is hard to manipulate in a
reasonable amount of time by a single processor.

Proposed Framework

Our framework provides an efficient combination of model
checking and theorem proving to achieve the automatic
style of model checking as well as the logical foundation
of theorem proving. It also applies distributed computing
to manage the state space explosion problem and to make
the verification process more efficient.
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Figure: Proposed Framework

Verification Process

- Step 1 The XML parser generates a simple text
file containing the places, transitions and arcs
extracted from the XML file generated by the
CPNTool.

- Step 2 The state space generator program takes
the text file and generates the state space by
executing the PN model.

- Step 3 The tableau model checker then verifies
the properties on that state space.

- Step 4 The output of the model checker shows
either the specification properties are true or
generates a counter model.

« The framework also incorporates an ontology
reasoner to guide the verification process.
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Tableau MC For Bounded Time CTL
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Here rule 6 states that for a Kripke model M, the
formula AX ¢ is true in state s iff for all states s’
adjacent to s, ¢ is also true in s’. An example
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Figure: A simple state space

state space to see whether ¢ and ¥
are true or not, in states s’ and s”
respectively.

Distributed Memory Computing

Our framework uses distributed computing as follows:

® The Petri net model is distributed over processors to generate the
state space.

@® Each processor will search only its local states.

Distribution of the PN model can be, by distributing the
places or the transitions, or according to a cutting set.
Distribution by places increases inter-process communi-
cation. Computing the cutting set involves extra effort,
can be problematic, and is application dependent. Our
framework represents the Petri net in memory, as a list of
transitions containing the input and output places.

« The framework applies the SPMD paradigm of parallel
programming to distribute the computation task.

= The Petri net is distributed by transitions.

= The tableau MC algorithm will search the distributed
state space graph to find out which propositions are
true in which state.

Related Works

K. Miller (in 2009) developed a model checker for on-
tology driven workflow verification. It involved a manual
translation of a PN model to its state space, the specifica-
tion language was Timed BDIl~7; and the implementation
used Prolog in a shared memory architecture.

J. Dallien (in 2007) developed a model checker for health
care workflow verification that involved a manual transla-
tion of a PN model to its state space, the specification
language was ACT'L and a serial Prolog implementation
was used.

Discussion

One major difference in the proposed framework is
the implementation language is now MPI C++4-, which
makes the system architecture easier to extend than
the unstructured Prolog implementation. Also C++
has been successfully used and proved to be efficient
in various theorem provers. The distributed memory
computation makes the system capable of handling
very large model efficiently.

This project is the first author's M.Sc. thesis, the
completed project will have important implications to
safety critical system design.
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