
OwlOntDB: A Scalable Reasoning System for
OWL 2 RL Ontologies with Large ABoxes

Rokan Uddin Faruqui and Wendy MacCaull

Centre for Logic and Information
St. Francis Xavier University

Nova Scotia, Canada
{x2010mcd,wmaccaul}@stfx.ca

Abstract. Ontologies are becoming increasingly important in large-
scale information systems such as healthcare systems. Ontologies can
represent knowledge from clinical guidelines, standards, and practices
used in the healthcare sector and may be used to drive decision support
systems for healthcare, as well as store data (facts) about patients. Real-
life ontologies may get very large (with millions of facts or instances).
The effective use of ontologies requires not only a well-designed and
well-defined ontology language, but also adequate support from reason-
ing tools. Main memory-based reasoners are not suitable for reasoning
over large ontologies due to the high time and space complexity of their
reasoning algorithms. In this paper, we present OwlOntDB, a scalable
reasoning system for OWL 2 RL ontologies with a large number of in-
stances, i.e., large ABoxes. We use a logic-based approach to develop the
reasoning system by extending the Description Logic Programs (DLP)
mapping between OWL 1 ontologies and datalog rules, to accommodate
the new features of OWL 2 RL. We first use a standard DL reasoner
to create a complete class hierarchy from an OWL 2 RL ontology, and
translate each axiom and fact from the ontology to its equivalent datalog
rule(s) using the extended DLP mapping. We materialize the ontology to
infer implicit knowledge using a novel database-driven forward chaining
method, storing asserted and inferred knowledge in a relational database.
We evaluate queries using a modified SPARQL-DL API over the rela-
tional database. We show our system performs favourably with respect to
query evaluation when compared to two main-memory based reasoners
on several ontologies with large datasets including a healthcare ontology.

Keywords: Ontology, Knowledge Representation, Healthcare System,
Scalable Reasoner, OWL 2 RL

1 Introduction

Ontologies are becoming increasingly important in large-scale information sys-
tems such as healthcare systems. Ontologies can represent knowledge from clin-
ical guidelines, standards, and practices used in the healthcare sector and may
be used to drive decision support systems for healthcare. Applications for these

2 Rokan Uddin Faruqui and Wendy MacCaull

types of systems use large ontologies, i.e., ontologies with a large number (mil-
lions) of instances. The W3C recommends the use of the Web Ontology Lan-
guage (OWL), a semantic markup language, which provides a formal syntax
and semantics to represent ontologies and paves the way for manipulating on-
tologies effectively [20]. However, the effective use of ontologies requires not
only a well-designed and well-defined ontology language, but also adequate sup-
port from reasoning tools. Ontology reasoning is a methodology for extracting
and inferring knowledge from ontologies. Description Logic (DL)-based reason-
ers including RacerPro, FaCT++, and Pellet can efficiently perform reasoning
over expressive OWL ontologies. However, these reasoners perform in-memory
reasoning and are not particularly suitable for reasoning over ontologies with
millions of instances such as those often needed for real-world applications such
as healthcare systems.

Several approaches have been applied to improve the scalability of the rea-
soners. One of the most widely used approaches is database integration, i.e.,
utilizing secondary memory to increase efficiency. A number of reasoners such
as OntMinD [5] and QuOnto [4] use database integration by directly mapping
ontologies to databases. In this approach, ontologies are expressed in terms of
UML class diagrams or/and ER diagrams and query rewriting techniques are
used to perform reasoning over information stored in relational databases [10].
However, this approach restricts the expressivity of ontologies and supports only
a small fragment of DL logic called DL-Lite [9]. DL-Lite is the maximal tractable
fragment that supports efficient query answering using a relational database. So
scalable reasoning with more expressive DL fragments is still a challenging prob-
lem. Another approach to improve the scalability of reasoners for more expressive
ontologies is the logic programming-based approach. In this approach, an ontol-
ogy is translated to a logic program, then inference algorithms for logic programs
are used for reasoning. The main advantage of this approach is to reuse existing
efficient inference algorithms and implementations, which are suitable for large
ontologies. Logic programming-based approaches improve the scalability of the
reasoning systems by handling large amounts of instances but still restrict the
expressivity of ontologies [16].

In this paper, we present a scalable reasoning system, OwlOntDB, for OWL
2 RL ontologies. Here, by scalability, we refer the ability to perform reasoning
over ontologies with large numbers of instances. The new standardization, OWL
2, has three profiles: OWL 2 EL - based on the EL++ Description Logic, OWL
2 QL - based on the DL-Lite family of Description Logics, and OWL 2 RL -
inspired by pD∗ and Description Logic Programs (DLP) [12]. Each profile ex-
hibits a polynomial time complexity for ontological reasoning tasks. We choose
OWL 2 RL because it offers a great deal of expressivity while being suitable for
rule-based implementations. Grosof et al. [12] give a DLP mapping to translate
OWL 1 ontologies to datalog programs to take advantage of logic programming-
based algorithms to infer knowledge. In our hybrid approach, we extend the
DLP mapping to accommodate the new features of OWL 2 RL, combine this
with a mapping to a relational database to develop a restrictions checker to han-

OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 3

dle some OWL 2 RL axioms and concepts that cannot be handled by the logic
programming-based approach, and then materialize all asserted and inferred
knowledge from an ontology to a relational database. Our approach is a combi-
nation of the database mapping and the logic programming-based inferencing.
However, instead of using the direct-mapping based approach to map OWL 2
RL ontologies to relational databases as in [10], we used a novel database-driven
forward chaining approach to infer and store OWL 2 RL ontologies to relational
databases.

The remainder of the paper is organized as follows. In section 2 we describe
our scalable reasoning system, OwlOntDB. In section 3 we evaluate the perfor-
mance of our system using two benchmark ontologies and a real-world ontology
for healthcare. We discuss related work in section 4 and conclude in section 5.

2 A Scalable Reasoning System for Large ABoxes:
OwlOntDB

We recall that OWL 2 is based on the family of Description Logics (DL) [6],
a family of decidable fragments of first order logic. A DL-based ontology has
two components: a TBox and an ABox. The TBox introduces vocabulary rele-
vant to a domain and their semantics, while the ABox contains assertions about
individuals using this vocabulary. Our reasoning system supports OWL 2 RL,
which describes the domain of an ontology in terms of classes, properties, in-
dividuals, and datatypes and values. Individual names refer to elements of the
domain; classes describe sets of individuals having similar characteristics; prop-
erties describe binary relationships between pairs of individuals. A property can
be either an object property which links an individual to an individual, or a
datatype property which links an individual to a data value. In OWL 2 RL,
object properties can be functional, inverse functional, irreflexive, symmetric,
asymmetric, or transitive; however, data properties can only be functional [20].
Note that the new features of OWL 2 RL not found in OWL 1 are qualified cardi-
nality restrictions, irreflexive, and antisymmetric properties, and property chain
inclusion axioms. The syntax of OWL 2 RL is asymmetric, i.e., the syntactic
restrictions allowed for subclass expressions differ from those allowed for super-
class expressions. For instance, an existential quantification to a class expression
(ObjectSomeValuesFrom) is allowed only in subclass expressions whereas univer-
sal quantification to a class expression (ObjectAllValuesFrom) is allowed only
in superclass expressions. These restrictions facilitate the rule-based implemen-
tation of reasoning systems for OWL 2 RL ontologies. Note that at present we
assume the Unique Name Assumption (UNA) to translate OWL 2 RL ontologies
into datalog programs. However, OWL 2 RL does not use the UNA i.e., it does
not treat two different OWL 2 RL elements with different names as different.
We are currently in the process of removing this limitation.

Ontological reasoning tasks are related either to the TBox, or to the ABox or
to both the TBox and the ABox of an ontology. Here we focus on developing a
scalable reasoner for reasoning tasks related to the ABox, namely ABox queries

4 Rokan Uddin Faruqui and Wendy MacCaull

and mixed TBox and ABox queries. We use an existing DL-based reasoner to
perform the TBox reasoning necessary to infer the complete subsumption rela-
tionship among classes (i.e., generate the class hierarchy). The overview of our
system is found in Fig 1. OwlOntDB takes an OWL 2 RL ontology and mate-
rializes the datalog version of the classified ontology to the relational database
using our technique which we refer to as a database-driven forward chaining and
uses a modified SPARQL-DL as a query interface to extract knowledge from the
database. The details of each step are explained in the following subsections.

Fig. 1. The system architecture of OwlOntDB

2.1 Translation

Our approach to reasoning is to express inference tasks for the OWL 2 RL
ontology in terms of inference tasks for the rule language datalog. Datalog is
a simple rule language stemming from Prolog. In this step, we translate the
classified ontology to a datalog programs using our extended DLP mapping.
We use the OWL API to parse the classified OWL 2 RL ontology and extract
all the logical axioms from the ontology. Then, we translate each logical axiom
into its equivalent datalog rule(s). In OWL 2 RL, facts are described using
ClassAssertions and ObjectPropertyAssertions/DataPropertyAssertions which
correspond to DL axioms of the form a : C and 〈a, b〉 : P , respectively, where
a and b are individuals, C is a class, and P is an object/data property. These
assertions axioms are already in the datalog rule format with empty bodies.
Translations of the OWL 2 RL axioms into datalog rules are given in Table 1.
Their (straightforward) semantics may be found in [11].

OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 5

OWL 2 RL Constructors DL Syntax Datalog Rule
ClassAssertions a : C C(a)
PropertyAssertion 〈a, b〉 : P P (a, b)
SubClassOf C v D C(x)→ D(x)
ObjectPropertyChain P ◦Q v R P (x, y) ∧Q(y, z)→ R(x, z)
EquivalentClasses C ≡ D C(x)→ D(x), D(x)→ C(x)
EquivalentProperties P ≡ Q Q(x, y)→ P (x, y)

P (x, y)→ Q(x, y)
ObjectInverseOf P ≡ Q− P (x, y)→ Q(y, x)

Q(y, x)→ P (x, y)
TransitiveObjectProperty P+ v P P (x, y) ∧ P (y, z)→ P (x, z)
SymmetricObjectProperty P ≡ P− P (x, y)→ P (y, x)
Object/DataUnionOf C1 t C2 v D C1(x)→ D(x), C2(x)→ D(x)
Object/DataIntersectionOf C v D1 uD2 C(x)→ D1(x),C(x)→ D2(x)
Object/DataSomeValuesFrom ∃P.C v D P (x, y) ∧ C(y)→ D(x)
Object/DataAllValuesFrom C v ∀P.D C(x) ∧ P (x, y)→ D(y)
Object/DataPropertyDomain > v ∀P−.C P (y, x)→ C(y)
Object/DataPropertyRange > v ∀P.C P (x, y)→ C(y)

Table 1. Translation of OWL 2 RL axioms into datalog rules

Recall that we translate an ontology to a logic program in order to use the
logic programming-based inference algorithm for ontology reasoning. However,
we can not handle OWL 2 RL concepts dealing with cardinality restrictions
- namely, maximum cardinality and minimum cardinality, and axioms dealing
with property restrictions - namely, functional, inverse functional, irreflexive,
asymmetric - using a logic programming-based approach. These concepts and
axioms impose certain restrictions over the object and data properties of an on-
tology and any violation of these restrictions results in an inconsistent ABox.
We developed a two-phase approach to the translation, using first an automated
translator to translate the ontology to datalog and then a restrictions checker to
check for ABox consistency with respect to the restriction concepts and axioms.
We represent each restriction concept/axiom by a datalog rule and then store
the restrictions of a property to a relational database by translating the data-
log rule to an SQL statement. For each assertion the restrictions checker checks
whether it violates any restrictions. The datalog representations of the restric-
tion concepts and axioms are given in Table 2. We illustrate this with a brief
example: Suppose we have a TBox axiom IrreflexiveObjectProperty(hasSibling)
(hasSibling is an irreflexive object property) and then we infer an ABox axiom
hasSibling(Bob, Bob). Now the ABox of the ontology will be inconsistent with
respect to the TBox axiom because Bob cannot be the sibling of himself (ir-
reflexivity). We identify all violations according to the semantics of the axioms
listed in Table 2, where n = 0 or 1.

2.2 Materialization

Materialization [8] is an approach for inferring and storing implicit knowledge
from ontologies. If the ABox of an ontology is large and the query rate is high, the

6 Rokan Uddin Faruqui and Wendy MacCaull

MinimumCardinality MaximumCardinality
> nP.C 6 nP.C
ObjectMinCardinality(n P C) ObjectMaxCardinality(n P C)
FunctionalProperty InverseFunctionalProperty
> v6 1 P > v6 1 P−

FunctionalObjectProperty(P) InverseFunctionalObjectProperty(P)
Irreflexive Asymmetric
∃ P.self v ⊥ P v ¬P−
IrreflexiveObjectProperty(P) AsymmetricObjectProperty(P)

Table 2. Datalog representation of the restrictions checker’s concepts and axioms

materialization technique is faster than the approaches that perform reasoning
during query evaluation. Materialization techniques are used in many scalable
reasoners, including [5], [21] and [18]. In our materialization approach, we use the
forward-chaining method to infer implicit knowledge and a relational database to
store information. In this section, we give a formal representation of the datalog
version of the translated ontology by an abstract syntax, explain how a datalog
rule can be translated to an SQL statement, and discuss the inferencing over
datalog programs.

The abstract syntax for our datalog program is given in Listing 1.1 using
a BNF. In this notation, the terminals are quoted, the non-terminals are not
quoted, alternatives are separated by vertical bars, and components that can oc-
cur zero or more times are enclosed by braces followed by a superscript asterisk
symbol ({. . .}∗). A class atom represented by class(i-object) in the BNF consists
of a class and a single argument representing an individual. For example, an
atom Person(x) holds if x is an instance of the class Person. Similarly, an in-
dividual property atom represented by ObjectProperty(i-object,i-object) consists
of an object property and two arguments representing individuals. For example,
an atom hasDog(x,y) holds if x is related to y by property hasDog. A functional
object property such as hasMother is encoded as FunctionalObjectProperty (has-
Mother). If an atom is a ground fact, i.e., there are no variables in its argument
list, we call it a restrictive atom, because such an atom is restricted to appear
only in the head of a datalog rule.

Program ::=Rule {Rule}∗
Rule ::= Head | Head ’←’ Body
Head ::= Atom | RestrictedAtom
Body ::= Atom{∧ Atom}∗
Atom ::= Class ’(’ i-object ’)’

| ObjectProperty ’(’ i-object ’,’ i-object ’)’
| DataProperty ’(’ i-object ’,’ d-object ’)’

RestrictedAtom ::= ’InverseObjectProperty(’ PropertyID ’,’ PropertyID’)’
| ’FunctionalObjectProperty(’ PropertyID ’)’
| ’InverseFunctionalObjectProperty(’ PropertyID ’)’
| ’SymmetricObjectProperty(’ PropertyID ’)’
| ’AsymmetricObjectProperty(’ PropertyID ’)’
| ’TransitiveObjectProperty(’ PropertyID ’)’
| ’IrreflexiveObjectProperty(’ PropertyID ’)’
| ’FunctionalDataProperty(’ PropertyID ’)’

OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 7

| ’ObjectMinCardinality(’ n PropertyID ClassID ’)’
| ’ObjectMaxCardinality(’ n PropertyID ClassID’)’
| ’ObjectPropertyDomain(’ ClassID ’)’
| ’ObjectPropertyRange(’ ClassID ’)’
| ’DataPropertyDomain(’ ClassID ’)’
| ’DataPropertyRange(’ ClassID ’)’

i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral
i-variable ::= ’I-variable(’ URIreference ’)’
d-variable ::= ’D-variable(’ URIreference ’)’

Listing 1.1. Abstract syntax for datalog programs

As we already mentioned, storing asserted and inferred information is part of
materialization and to achieve this, we translate each datalog rule to an equiva-
lent SQL statement. We use a database structure adapted from [18] which has 33
relational tables to store OWL 2 RL ontologies. The structure uses a metamap-
ping approach, putting all the Class assertions into one table, all the Object
Property assertions into a second table and all the Data Property assertions
into a third table, rather than using a separate table for each predicate. Exten-
sions of the database corresponding to extensions of an ontology are then easy
to make. A fragment of the database structure is given in Figure 2 where some
tables including their column names are shown. An arrow between two tables
represents a referential constraint (functional dependency) between the tables.
Referential constraints are also known as foreign keys.

In our datalog program, a datalog rule has one of the following forms

head(h1, . . . hn) (1)

head(h1, . . . hn)← body(b1, . . . , bn) (2)

head(h1, . . . hn)← body0(b1, . . . , bn) ∧ . . . ∧ bodyn(b1, . . . , bn) (3)

Datalog rules are closely related to operations in relational algebra, and the
foundation of SQL is also relational algebra. Analogies between datalog and
relational query languages such as SQL are well known and well studied [3]. We
translate the three kinds of datalog rules to their corresponding SQL statements
as follows:

(1) INSERT INTO <Table1> VALUES (h1, . . . hn)
(2) INSERT INTO <Table1> SELECT

<Projectors> FROM <Tables> WHERE <SELECTORS>
(3) INSERT INTO <Table1> SELECT <Projectors>

FROM <Table2> JOIN ... JOIN <TableN> WHERE <SELECTORS>

We use an exhaustive forward-chaining approach to infer implicit knowledge,
i.e., for each class/property assertion a forward-chaining is performed. This is a
novel database-driven forward chaining. We first translate all the ABox facts and
the TBox rules to their corresponding SQL statements. Executing the SQL state-
ments corresponding to the ABox stores these facts into a relational database.
For each fact we determine the rules relevant for forward chaining. Executing
the SQL statements for these rules stores new (inferred) facts into the database.

8 Rokan Uddin Faruqui and Wendy MacCaull

Fig. 2. A fragment of the database schema

Before storing any inferred information, we check whether it violates any re-
strictions listed in Table 2 by executing SQL statements corresponding to the
restrictions checker’s axioms and concepts.

Note that the W3C also recommends a set of rules corresponding to the OWL
2 RL profile. However, we are using set of datalog rules because the complexity of
forward-chaining approach over datalog programs is polynomial and the relation-
ship between datalog and SQL facilitates our database-driven forward-chaining
approach.

Our algorithm, Materialize(R, F), takes the datalog version of the OWL 2
RL ontology, and performs forward chaining to infer implicit knowledge. The al-
gorithmMaterialize(R, F) (Line 1 - 8) invokes the procedure Consequences(r,F)

to populate the relational database by asserted ABox facts and to select a set of
firable rules to perform database-driven forward-chaining. The Consequences(r,F)

(Line 1 -4) first checks whether the first argument is a rule or a fact. If it is a
fact, then it converts to it an equivalent SQL statement and executes the SQL
statement to store the asserted or inferred facts into the database. If the argu-
ment is not a fact (Line 5 - 9), this procedure checks whether the rule is firable.
A firable rule is enabled if the body predicates of the rule are matched by as-
serted or inferred facts. (Note we do not add inferred facts to F , as our algorithm
is not main-memory-based. Rather the isFirable(r) function accesses (asserted
and inferred) facts from the database.) After getting the set of firable rules, the

OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 9

Materialize(R, F) algorithm, (Line 7), translates each rule to its equivalent
SQL statement and translates all others datalog rules (i.e., not firable rules) to
their equivalent SQL statements in (Line 10 -11). Before storing inferred facts
by executing all the SQL statements, the checkRestriction(s) (Line 12) method
checks whether any assertion violates any restrictions and if not, it allows the
execution of the associated SQL statement by executeSQL(s) to store the infor-
mation in a relational database, otherwise it raises an exception message about
the inconsistency of the ABox (Line 11 - 13). For example, if hasMother(x, y)
is a functional object property, the restrictions checker queries the relational
database to check whether x is connected to more than one different y. Full
details of the checkRestriction(s) method may be found in [11].

Algorithm 1: Materialize(R, F) - materialize a datalog program into the
database.

Data: R- set of datalog rules F- set of ABox facts
Result: S- set of SQL statements.

1 repeat
2 inferred ⇐ false
3 for ∀ r ∈ R do
4 for ∀ f ∈ Consequences(r , F) do
5 if f /∈ F then
6 inferred ⇐ true
7 S ⇐ datalogToSQL(f)

8 until ! inferred
9 for ∀ r ∈ R do

10 S ⇐ datalogToSQL(r)

11 for ∀ s ∈ S do
12 if checkRestriction(s) then
13 executeSQL(s)

2.3 Query Processing

In this subsection, we describe a query interface to extract materialized knowl-
edge from the database. SPARQL [25] is a W3C recommendation for querying
RDF graphs. An RDF graph is a collection of (subject, predicate, object) triples.
We cannot use SPARQL as it exists as a query language for OWL 2 RL for two
reasons. First, it is based on the triple patterns of RDF graphs, but RDF triple
patterns do not match the well-defined OWL 2 RL syntax, so a modified version
of SPARQL is necessary. Second, in our framework, we materialize ontologies to
relational databases. So we need a modified version of SPARQL to retrieve data
from relational databases.

SQL, the query language for relational databases, includes support for large
data-storage, efficient indexing schemes, and query optimization. If we directly

10 Rokan Uddin Faruqui and Wendy MacCaull

Procedure Consequences(r,F) - recursively applied for all the predicates
of a rule body to derive the consequence.

Data: r - a datalog rule, F- set of ABox facts.
1 if r is a fact then
2 datalogToSQL(r)
3 executeSQL(s)
4 return r

5 inferred ⇐ ∅
6 for ∀ f ∈ F do
7 if isFirable(r) then
8 inferred ⇐ inferred ∪ r

9 return inferred

use SQL to extract knowledge from materialized ontologies, then users have to
learn the underlying relational schemas. Many real-world semantic web-based
applications need to extract data from both relational sources and ontologies.
So a uniform query language is necessary for accessing both structured data
(e.g., from relational databases) and semi-structured data (e.g., RDF triples,
OWL ontologies).

In order to use SPARQL for querying ontologies based on OWL 1, Sirin and
Parsia [27] designed a query language by modifying SPARQL called SPARQL-
DL, a substantial subset of SPARQL, by mapping RDF triple patterns using
OWL 1 DL semantics. Therefore, SPARQL-DL supports only the semantics of
OWL 1 ontologies. The SPARQL-DL API [2] supports a query language, which
we will refer to as SPARQL-DLE , for OWL 2 ontologies (including OWL 2
RL ontologies). However, the SPARQL-DL API is built to interface with main-
memory-based OWL 2 reasoners, so we need some modifications to support
queries over the relational database-based reasoner. In this subsection, we de-
scribe the semantics of SPARQL-DLE and explain our modifications.

The semantics of SPARQL-DLE . SPARQL-DLE is an expressive query
language that can combine TBox and ABox queries. Here we briefly describe the
semantics of SPARQL-DLE which we extended from [27].

Let O be an OWL 2 ontology, let VO = (Vcls,Vop,Vdp,Vind,VD,Vlit) be
a vocabulary for O and let I = (∆I , .I) be an interpretation for O. The list
of SPARQL-DL query atoms for OWL 1 and their corresponding semantics
may be found in [27]. Two new query atoms are required to deal with OWL
2: Reflexive(p) and Irreflexive(p). Their semantics is given in Table 3. Here
a(i) ∈ Vuri ∪ Vvar ∪ Vbnode, d ∈ Vuri ∪ Vvar ∪ Vbnode ∪ Vlit, C(i) ∈ Vvar ∪ Sc,
p(i) ∈ Vuri ∪ Vvar, Vcls is the set of classes, Vop is the set of object properties,
Vdp is the set of data properties, Vind is the set of individuals, Vlit is the set of
literals and VD is the set of data types of O. Note that OWL 2 RL does not

OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 11

include reflexivity, so our reasoning system does not support queries involving
reflexive properties.

Query atom q I �δ q if
Type(a,C) δ(a) ∈ CI
Reflexive(p) < a, b >∈ pI implies a = b
Irreflexive(p) < a, b >∈ pI implies a 6= b

Table 3. Satisfaction of a SPARQL-DLE query atom with respect to an interpretation

An evaluation δ : Vind ∪ Vbnode ∪ Vlit → ∆I is a mapping from the individ-
ual names, blank nodes, and literals used in the query to the elements of the
interpretation domain ∆I subject to the requirement δ(a) = aI if a ∈ Vind or
a ∈ Vlit. The interpretation I satisfies a query atom q, I �δ q, if q is compat-
ible with the corresponding condition for the query atom. I satisfies a query
Q = q1 ∧ . . . ∧ qn. w.r.t. an evaluation δ iff I |=δ qi for every i = 1, . . . , n.

A solution to a query Q is a mapping µ : Vvar → Vcls ∪ Vop ∪ Vdp ∪ Vlit
such that when all the variables in Q are substituted with the corresponding
value from µ we get a ground query µ(Q) (i.e., an atom having no variables)
compatible with VO and O � µ(Q).

Implementation of SPARQL-DLE in OwlOntDB. We modified the SPA-
RQL-DL API to extract knowledge from the relational database and imple-
mented it in our system. The SPARQL-DL API is built on top of the OWL
API [15]. The SPARQL-DL API was designed in such a way that it can an-
swer mixed TBox and ABox queries by invoking interfaces, such as allC(O),
allDP (O), allOP (O), allI(O), etc., provided by the ontology reasoner. We mod-
ified these interfaces (see the full list of interfaces that required modification be-
low) so that this API can evaluate queries using our persistent reasoning system.

1. allC(O), allDP (O), allOP (O), allI(O) return all classes, data properties,
object properties, and individuals, respectively, defined in O.

2. subC(O, C), supC(O, C), eqC(O, C) return all sub classes, super classes, and
equivalent classes, respectively, of class C in O.

3. subOP (O,P), supOP (O,P), eqOP (O,P), subDP (O,P), supDP (O,P), eq
DP (O,P) return all sub object properties, super object properties, equiva-
lent object properties, sub data properties, super data properties, and equiv-
alent data properties, respectively, of properties p in O.

4. en(O, q) checks whether O � q for a SPARQL-DLE atom q.

Recall we stored asserted and inferred information from ontologies into databases.
Therefore, we need an SQL query for each interface described in (1)-(3) to re-
trieve relevant information from corresponding tables of the relational database.
For example, the SQL queries for subC(O, C) and supOP (O,P) are:

SELECT SubID FROM SubClassOf WHERE SuperID = C
SELECT SuperPropertyID FROM SuperPropertyOf WHERE SubPropertyID = P

The SQL queries retrieve all subclasses for a given class and all super properties
for a given object property, respectively. The query given in 4. is evaluated by the

12 Rokan Uddin Faruqui and Wendy MacCaull

SPARQL-DL API by invoking the appropriate interfaces discussed in 1.-3. For
instance, if we consider the query q = SubClassOf (′′ Person ′′, c), the SPARQL-
DL API will invoke the interface subC(O, P erson) to retrieve all the subclasses
of “Person” from the database.

3 Evaluation

We evaluated OwlOntDB using an OWL 2 RL pain management ontology con-
structed from the guidelines for the management of cancer related pain in adults,
which provides a standard approach in assessing and managing cancer related
pain in adults across Nova Scotia, Canada [7]. We evaluated OwlOntDB using
this pain ontology because there are no widely accepted benchmarks for OWL
2. In [22], the authors discussed this problem and identified that while there are
some ontologies that can be used as standards for testing TBox reasoning, there
are no such standards for ABox reasoning. Evaluation was done on a laptop
computer with 2.4 GHz Intel Core 2 Duo processor, 4 GB of RAM running Mac
OS X version 10.6.8.

We use the pain management ontology [26] that includes the terminology
and concepts of health and medicine used in the Guysborough Antigonish Strait
Health Authority (GASHA) and some terms from SNOMED-CT [1], ICNP [14],
and the guidelines for cancer pain treatment. A fragment of the pain management
ontology is depicted in Figure 3. Our ontology includes several classes includ-
ing Pain, Person, Patient, PainIntensityType, SpecialPainProblem, SideEffects;
some object properties including hasPainIntensity, Domain:Pain, Range:PainInt-
ensityType, and data properties including hasPainLevel, Domain :Pain, Range:xs-
d:int, inverse object properties such as isFeeling and isFeltBy, and functional ob-
ject properties including hasPainLevel, i.e., each pain level belongs to an instance
of Pain class. We also use propositional connectives to create complex class ex-
pressions (e.g., persons who feel pain are patients, in DL Person u ∃isFeeling .Pain
v Patient). We developed a data generator similar to that developed for the
LUBM benchmark [13] to synthetically generate large numbers of instances for
the pain management ontology. We generated five test datasets, PM250, PM500,
PM1000, PM2000, and PM3000, where the number of patients n = 250, 500, 1000,
2000, and 3000, respectively, and evaluated the following two queries to evaluate
the performance of our system. The SPARQL-DLE formulation of each query
appears below its natural language formulation.

PM Q1. Determine the medication information of all patients who feel “Mu-
cositis” pain.

PREFIX pm: <http://logic.stfx.ca/ontologies/PainOntology.owl#>
SELECT ?i ?j WHERE {
Type(?i,pm:Patient), PropertyValue(?i, pm:isFeeling, pm:MucositisPain),
PropertyValue(?i, pm:hasMedication, ?j) }

PM Q2. Find the names of those relatives (of patients) who serve as informal
care givers.

PREFIX pm: <http://logic.stfx.ca/ontologies/PainOntology.owl#>

OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 13

Fig. 3. A fragment of the pain management ontology

SELECT ?i ?j WHERE {
Type(?i,pm:Patient), PropertyValue(?i, pm:hasCarer , ?j),
SubClassOf(?j, pm:Relative) }

The first query is a conjunctive ABox query and the second query is a con-
junctive mixed TBox and ABox query. We evaluated these queries over the cor-
responding ontologies using OwlOntDB and also using two highly optimized in-
memory reasoners Pellet and RacerPro 2.0. Our goal is to show that in-memory
reasoners cannot deal with ontologies with large ABoxes. The OwlOntDB mate-
rializes the information to a database, so it needs an initial processing before
query evaluation. The initial processing time (i.e., materialization time) for five
datasets required for OwlOntDB and total number of axioms in each ontology are
given in Table 4.

PM250 PM500 PM1000 PM2000 PM3000

No. of Axioms 20344 40396 77600 156308 231555
Time (sec.) 20.71 45.94 90.34 263.24 345.28

Table 4. Time required for materialization for the PM ontology

We also evaluated our system using two well-known benchmark ontologies
for OWL 1: LUBM - an ontology about organizational structures of universi-
ties developed to test the performance of ontology management and reasoning
systems 1, and the Wine ontology - an ontology containing a classification of
wines, taken from the KAON2 site 2. We used two LUBM datasets from LUBM
namely, lubm1, and lubm10, where 1 and 10 are the number of universities used
to generate test data and two Wine datasets wine1 - the original wine ontology,

1 http://swat.cse.lehigh.edu/downloads/index.html
2 http://kaon2.semanticweb.org/download/test ontologies.zip

14 Rokan Uddin Faruqui and Wendy MacCaull

and wine5 - which is synthetically generated by replicating 25 times the ABox
of wine1. The details of both ontologies can be found in [22]. We evaluated the
following queries over the appropriate LUBM and Wine ontologies:

LUBM Q1. Find names of the students who are university employees along
with their type of employment. (Note this is a mixed ABox and TBox query.)

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT * WHERE {

Type(?x, ub:Student), Type(?x, ?C), SubClassOf(?C, ub:Employee)}

LUBM Q2. Find the names of all students.

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT * WHERE {

Type(?x, ub:Student)}

Wine Q1 Determine all instances of “AmericanWine”.

PREFIX wine: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

SELECT ?i WHERE {

Type(?i, wine:AmericanWine)}

Wine Q2 Determine all the instances of wine which are “Dry”.

PREFIX wine: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

SELECT ?i WHERE {

Type(?i,?x), SubClassOf(?x, wine:DryWine) }

The materialization time for the LUBM and Wine ontologies required for
OwlOntDB and total number of axioms in each ontology are given in Table 5.

LUBM1 LUBM10 Wine1 Wine5
No. of Axioms 84562 1316410 649 5576

Time (sec.) 117.58 830.53 21.422 217.5

Table 5. Time required for materialization for the LUBM and Wine ontologies

The query evaluation time for Pellet, RacerPro, and OwlOntDB is given in
Table 6. Standard tableau-based reasoners support more expressive fragments of
DL and efficiently perform reasoning over ontologies with small ABoxes. From
our experiments, we found that for ontologies with large ABoxes, our reasoning
outperformed its tableau counterpart. Although we first used a tableau-based
DL reasoner for the TBox reasoning required for classification, we get better
performance for the query evaluation than these tableau-based reasoners be-
cause we first materialized the inferred information into a database. After the
materialization, reasoning over a materialized ontology is simply an SQL query
into a relational database. Main-memory based reasoners perform inferencing
for each query, so they take a longer time when the ABox is large. Indeed, we
can see from the Table 6 that we do not get any query result from either Pellet
or RacerPro for a large ontology like LUBM10, but, the query response time

OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 15

for this ontology using our OwlOntDB is very low. The disadvantage of the ma-
terialization technique is that it takes a long time initially to materialize the
ontology.

Q1 Q2

Pellet RacerPro OwlOntDB Pellet RacerPro OwlOntDB
PM250 41.65 27 7.53 65.85 . . . 9.79
PM500 91.83 70 11.71 127.038 . . . 14.89
PM1000 179.50 105.5 16.89 259.678 . . . 19.01
PM2000 718.18 225 20.78 959.32 . . . 23.21
PM3000 - 430 29.21 - . . . 34.01
LUBM1 129.02 . . . 3.43 127 73 0.79
LUBM10 - . . . 29.07 - - 15.03
Wine1 2.95 24 0.047 2.9 . . . 0.11
Wine5 6.08 37 0.3435 386.59 . . . 1.171

Table 6. A comparison of query answering times (in seconds). “-” means that the
reasoner failed to return the result and “. . .” means that the reasoner does not support
the query. Note that RacerPro supports only TBox queries, a limitation not due to
in-memory problems but due to the nature of RacerPro.

Recall we use a standard DL reasoner for the TBox reasoning which creates
a complete class hierarchy if the corresponding TBox is consistent. Therefore,
OwlOntDB is complete for TBox reasoning. The ABox reasoning is based on
a database-driven forward chaining approach. The empirical completeness of
ABox reasoning was checked by comparing the ABox reasoning results with the
results of the OWL 2 reasoners Pellet and RacerPro. A similar empirical ap-
proach is used in [23], to compare their in-memory-based OWL 2 RL reasoners
with Hermit. While efficient for the TBox reasoning, their in-memory-based im-
plementation performed poorly on ontologies with large ABoxes. We are still
working on the algorithm to deal with the situation where the set of axioms is
cyclic; currently our algorithm may not terminate if the set of axioms is cyclic.

4 Related Work

There has recently been considerable interest in developing scalable persistent
reasoning systems for Semantic Web applications. The integration of relational
databases and DL-based reasoners has been realized in many research initia-
tives including [18], [29], [4]. Most scalable reasoning systems such as Min-
erva [29], SOAR [18], and DLDB2 [24] combine existing DL reasoners with logic
programming-based approaches. However, these reasoners are based on DLP,
providing only incomplete coverage of OWL 2 RL reasoning. We use a 2-phase
approach to deal with all OWL 2 RL axioms.

OWLIM [16] is an in-memory reasoner. It also uses the logic programming
based approach (i.e., forward-chaining for inferencing) and focuses only on the
DLP fragment, hence it covers a subset of OWL 2 RL. Another logic programming-
based DL reasoner is KAON2 [21]. In KAON2, the ontology is translated into a

16 Rokan Uddin Faruqui and Wendy MacCaull

logic program and then it is materialized into a deductive database for querying
and storing the information. This approach is similar to our approach, except we
develop a scalable reasoner for OWL 2 RL, a more expressive fragment than that
supported by KAON2, and materialize the information to a relational database
rather than to a deductive database.

Another database-driven reasoning system is Orel [17], which covers the full
profile of OWL 2 RL as well as the OWL 2 EL profile, using an algorithm based
on DLP. However, this system supports only TBox reasoning; it does not support
(conjunctive) query answering (i.e., ABox reasoning). Another limitation of this
system is that it does not support a standard query language for the extraction
of knowledge from materialized ontologies, therefore, users have to know the
detailed structure of the underlying database schema to extract knowledge using
SQL. To extract knowledge from the database OwlOntDB supports SPARQL-
DLE , so users of our system have to know only about the ontology.

DLEJena [19] is an OWL 2 RL reasoner that also combines a forward-
chaining-based rule engine Jena and a DL reasoner Pellet. It supports a practi-
cal subset of OWL 2 RL. A pair of OWL 2 RL reasoners is described in recent
work, [23] using two existing rule systems Jess and Drools. However, these rea-
soners are all in-memory-based reasoners; they are not scalable: they cannot
handle ontologies with large ABoxes. We could not find any scalable OWL 2 RL
reasoners to use for comparison with our approach.

5 Conclusion and Future Work

Scalable reasoning is crucial for the development of large-scale ontology-driven
applications. In this paper, we propose a practical scalable ontology reasoning
approach. The combination of DL reasoners with logic-based inferencing using
datalog exploits the particular advantages of each method in order to support
expressive ontologies, such as those which use OWL 2 RL in their TBoxes, and
large ABoxes. Logic-based approaches give us scalable reasoning strategies, and
database systems are a well-known technology for handling large amounts of
data. We develop a hybrid approach by applying database-driven forward chain-
ing approach over logic-based translated ontologies that allows us to perform
scalable reasoning over ontologies with large ABoxes. There is a number of ad-
vantages and disadvantage for materialization techniques. However, they are
good for many applications where query answering is more frequent and updat-
ing is less frequent.

Our approach is still preliminary and some improvements can be made. One
of the future directions to improve our system is to remove the Unique Name
Assumption (UNA) because UNA is not made in OWL 2 semantics. The ini-
tial processing time for the materialization is very high. Parallel and distributed
computing may be applied to reduce the materialization time. However, this
will not be fast enough for applications that require frequent update and real-
time query answering, such as healthcare applications, where ontologies are used
to drive decision support systems. The current strategy is to rematerialize the

OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 17

whole ontology if the ontology is updated, but this brings a heavy overhead as the
time required for materialization must be added to the time for query-answering.
Incremental materialization is anticipated to be an efficient solution for the up-
date problem. We are working to reduce materialization time by replacing our
exhaustive forward chaining inferencing approach by an incremental approach
that rematerializes relevant axioms. We note that Pellet supports incremental
materialization but only for concept assertions. There are also some works in
deductive database areas for incremental maintenance of truth in materializa-
tion [28]; a further investigation can be made to check whether these techniques
can be used for relational databases. Efficient handling of frequent updates in
an ontology with large number of instances is an important aspect of developing
large-scale ontology-driven systems such as healthcare systems.

Acknowledgments This work is supported by an NSERC Discovery Grant, an
NSERC Industrial Post Graduate Fellowship and ACOA. We would like to thank Fazle
Rabbi for the help to develop benchmark data generator, Jocelyne Faddoul and Fazle
Rabbi for support on RacerPro and Rachel Embree and Mary Heather Jewers for
the fruitful discussions about ontologies and the guidelines for the management of
cancer related pain in adults. We thank the anonymous referees for their comments
and corrections.

References

1. SNOMED-CT Systematized Nomenclature of Medicine-Clinical Terms.
http://www.ihtsdo.org/snomed-ct/ (2007)

2. SPARQL-DL API. http://www.derivo.de/en/resources/sparql-dl-api/ (2011)
3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley

(1995)
4. Acciarri, A., Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Palmieri,

M., Rosati, R.: QuOnto: Querying Ontologies. In: Veloso, M.M., Kambhampati, S.
(eds.) AAAI. pp. 1670–1671. AAAI Press / The MIT Press (2005)

5. Al-Jadir, L., Parent, C., Spaccapietra, S.: Reasoning with large ontologies stored
in relational databases: The OntoMinD approach. Data & Knowledge Engineering
69(11), 1158–1180 (November 2010)

6. Baader, F., McGuinness, D.L., Nardi, D., (Eds.), P.F.P.S.: The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003)

7. Broadfield, L., Banerjee, S., Jewers, H., Pollett, A.J., Simpson, J.: Guidelines for
the management of cancer-related pain in adults. Supportive care cancer site team,
cancer care Nova Scotia, Canada. (2005)

8. Broekstra, J.: Storage, Querying and Inferencing for Semantic Web Languages.
Ph.D. thesis, VU Amsterdam (2005)

9. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable rea-
soning and efficient query answering in description logics: The DL-Lite Family.
Journal of Automated Reasoning 39, 385–429 (October 2007)

10. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R.: Ontologies and Databases: The DL-Lite Approach. In: Tes-
saris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.C.,
Schmidt, R.A. (eds.) Reasoning Web. LNCS, vol. 5689, pp. 255–356. Springer
(2009)

18 Rokan Uddin Faruqui and Wendy MacCaull

11. Faruqui, R.U.: Scalable reasoning over large ontologies. MSc thesis, St. Francis
Xavier University, 2012, Available at http://logic.stfx.ca/thesis/

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proceedings of the 12th interna-
tional conference on World Wide Web. pp. 48–57. ACM Press (2003)

13. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. J. Web Sem. 3(2-3), 158–182 (2005)

14. Hardiker, N., Coenen, A.: A formal foundation for ICNP. Journal of Stud Health
Technol Inform 122, 705–709 (2006)

15. Horridge, M., Bechhofer, S.: The OWL API: A java API for working with OWL 2
Ontologies. In: 6th OWL Experienced and Directions Workshop (OWLED) (Oc-
tober 2009)

16. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - A Pragmatic Semantic Repos-
itory for OWL. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S.,
Pan, Z., Sheng, Q.Z. (eds.) WISE Workshops. Lecture Notes in Computer Science,
vol. 3807, pp. 182–192. Springer (2005)

17. Krötzsch, M., Mehdi, A., Rudolph, S.: Orel : Database-Driven reasoning for OWL
2 Profiles. In: 23rd Int. Workshop on Description Logics (DL2010). pp. 114–124
(2010)

18. Lu, J., Ma, L., Zhang, L., Brunner, J.S., Wang, C., Pan, Y., Yu, Y.: SOR: a
practical system for ontology storage, reasoning and search. In: Proceedings of the
33rd international conference on Very large data bases. pp. 1402–1405. VLDB ’07,
VLDB Endowment (2007)

19. Meditskos, G., Bassiliades, N.: DLEJena: A practical forward-chaining OWL 2
RL reasoner combining Jena and Pellet. Web Semant. 8(1), 89–94 (Mar 2010),
http://dx.doi.org/10.1016/j.websem.2009.11.001

20. Motik, B., Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web On-
tology Language: Profiles, W3C Recommendation. http://www.w3.org/TR/owl2-
profiles/ (October 2009)

21. Motik, B.: KAON2 - Scalable Reasoning over Ontologies with Large Data Sets.
ERCIM News 2008(72) (2008)

22. Motik, B., Sattler, U.: A Comparison of Reasoning Techniques for Querying Large
Description Logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006.
LNCS, vol. 4246, pp. 227–241. Springer, Phnom Penh, Cambodia (2006)

23. O’Connor, M.J., Das, A.: A Pair of OWL 2 RL Reasoners. In: Klinov, P., Horridge,
M. (eds.) OWLED. CEUR Workshop Proceedings, vol. 849. CEUR-WS.org (2012)

24. Pan, Z., Zhang, X., Heflin, J.: DLDB2: A Scalable Multi-perspective Semantic Web
Repository. In: Web Intelligence. pp. 489–495. IEEE (2008)

25. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation. Available at http://www.w3.org/TR/rdf-sparql-query/ (2008)

26. Rakib, A., Faruqui, R.U., MacCaull, W.: Verifying resource requirements for
ontology-driven rule-based agents. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS. Lec-
ture Notes in Computer Science, vol. 7153, pp. 312–331. Springer (2012)

27. Sirin, E., Parsia, B.: SPARQL-DL: Sparql query for OWL-DL. 3rd OWL Experi-
ences and Directions Workshop (OWLED-2007) (2007)

28. Volz, R., Staab, S., Motik, B.: Incrementally Maintaining Materializations of On-
tologies Stored in Logic Databases. Journal of Data Semantics II 3360, 1–34 (2005),
lNCS, Springer

29. Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A Scalable OWL
Ontology Storage and Inference System. In: Mizoguchi, R., Shi, Z., Giunchiglia, F.
(eds.) The Semantic Web AWSC, LNCS, vol. 4185, pp. 429–443. Springer (2006)

