

User Manual

 Copyright Centre for Logic and Information

NOVANOVANOVANOVA

WorkFlow

User Manual
(version 2.0)

Centre for Logic and Information (CLI), 2012

NOVANOVANOVANOVA

WorkFlow

User Manual

, 2012

2 | P a g e

NOVA WorkFlow User Documentation

Version 2.0 / 2012 November

Author: Fazle Rabbi

Reviewer: Janet Norgrove

COPYRIGHT © Centre for Logic and Information

assumes no responsibility for any errors or omissions that may appear in this

document. The contents of this document must not be

whatsoever without prior written consent from CLI.

Centre for Logic and Information

St. Francis Xavier University

St Mary’s Street

Antigonish, NS Canada

B2G 2A5

Home page: www.logic.stfx.ca

 N O V A W o r k F l o w 2 . 0

NOVA WorkFlow User Documentation

ovember

COPYRIGHT © Centre for Logic and Information (CLI). All rights reserved. CLI

responsibility for any errors or omissions that may appear in this

The contents of this document must not be reproduced in any form

without prior written consent from CLI.

Centre for Logic and Information

St. Francis Xavier University

www.logic.stfx.ca

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

. All rights reserved. CLI

responsibility for any errors or omissions that may appear in this

reproduced in any form

3 | P a g e

ACKNOWLEDGMENT

This work is sponsored by Natural Sciences and Engineering Research Council

(NSERC), by an Atlantic Computational Excellence Network (ACEnet)

Fellowship and by the Atlantic Canada

Innovation Fund.

 N O V A W o r k F l o w 2 . 0

is sponsored by Natural Sciences and Engineering Research Council of Canada

(NSERC), by an Atlantic Computational Excellence Network (ACEnet) Post Doctoral Research

Fellowship and by the Atlantic Canada Opportunities Agency (ACOA) through the Atlantic

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

f Canada

Post Doctoral Research

(ACOA) through the Atlantic

4 | P a g e

TABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTS

CHAPTER/SECTION

CHAPTER 1...

Introduction...

 Product Overview...

 How to install..

 Starting the installation...

 Workflow components vie

 Import a sample project......

 Task specification file...

 Import the sample client application

 Create a new workflow model

CHAPTER 2...

Using the editor..

 Insert an atomic task...

 Insert a split-join block..

 Increase number of branches of Split

 Insert a Loop...

 Edit a task..

 Delete a task..

 Make Composite Task...

CHAPTER 3...

Using T□ to write task specification..

 N O V A W o r k F l o w 2 . 0

TABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTS

..

...

...

..

...

Workflow components view...

..

...

Import the sample client application...

Create a new workflow model..

...

...

...

..

e number of branches of Split-Join block..

...

..

..

...

...

..

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

TABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTS

PAGE

 6

6

 6

 7

 9

 10

11

12

14

16

18

18

18

19

20

20

21

22

23

24

24

5 | P a g e

 Overview of the features of T

 Procedural statements in T

 Query and manipulate ontologies

 Query an ontology...

 Create a new fact..

 Delete a fact...

 Update a fact...

 Design User Interface.........................

 Server vs. Client side code

CHAPTER 4...

Using the workflow engine...

 Configure your project for deployment

 How to deploy..................

 Play with the application

 N O V A W o r k F l o w 2 . 0

the features of T□...

Procedural statements in T□...

Query and manipulate ontologies...

..

..

...

...

...

Server vs. Client side code..

..

...

Configure your project for deployment..

How to deploy..

Play with the application..

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

25

25

26

27

27

28

28

28

32

34

34

34

36

37

6 | P a g e

Chapter 1

introduction

Product Overview

Developed with understanding of compensable transaction and formal verification, NOVA

WorkFlow is an innovative workflow modeling framework based on the Compensable Workflow

Modeling Language (CWML)1, a formal graphical language proposed by CLI. The framew

consists of a graphical editor, a task specification editor,

engine.

The graphical editor provides visual modeling of workflow which ensures correctness by

construction. The editor is developed as an Eclipse RCP plug

UI features provided by Eclipse and install the editor in different OS platform.

A task specification editor has been incorporated in NOVA WorkF

writing T□ (T-Square3) code in eclipse editor.

development. It incorporates following features:

statements, ii) querying and manipulating ontologies, iii) designing a rich user interface (UI),

specifying access control policy,

communication details.

--

1 For details on CWML, please refer to

WorkFlow Net". The 12th International Conference on Formal Engineering

2 Eclipse, a popular and powerful Java IDE,

just about any client application. The minimal set of plug

collectively known as the Rich Client Platform

3 For details on T□, please refer to Fazle Rabbi and Wendy MacCaull.

Language for Rapid Workflow Development

Engineering Languages & Systems (MODELS 2012), Innsbruck, Austria (September, 2012). Proceedings,

Lecture Notes in Computer Science, Volume 7590. pp. 36

 N O V A W o r k F l o w 2 . 0

introduction

Developed with understanding of compensable transaction and formal verification, NOVA

WorkFlow is an innovative workflow modeling framework based on the Compensable Workflow

, a formal graphical language proposed by CLI. The framew

a task specification editor, a code generator and a workflow

The graphical editor provides visual modeling of workflow which ensures correctness by

construction. The editor is developed as an Eclipse RCP plug-in2, so one can make use of many

UI features provided by Eclipse and install the editor in different OS platform.

been incorporated in NOVA WorkFlow version 2.0 which allows

eclipse editor. T□ is a domain specific language for workflow

orates following features: a) a simple syntax for i) writing procedural

statements, ii) querying and manipulating ontologies, iii) designing a rich user interface (UI),

 v) dynamically scheduling tasks; b) abstraction of

--

For details on CWML, please refer to Fazle Rabbi, Hao Wang and Wendy MacCaull. "Compensable

WorkFlow Net". The 12th International Conference on Formal Engineering Methods (ICFEM 2010).

Eclipse, a popular and powerful Java IDE, is architected so that its components could be used to build

t about any client application. The minimal set of plug-ins needed to build a rich client application is

collectively known as the Rich Client Platform (RCP).

Fazle Rabbi and Wendy MacCaull. “T-Square: A Domain Specific

Language for Rapid Workflow Development”. ACM/IEEE 15th International Conference on Model Driven

Engineering Languages & Systems (MODELS 2012), Innsbruck, Austria (September, 2012). Proceedings,

Lecture Notes in Computer Science, Volume 7590. pp. 36-52.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

Developed with understanding of compensable transaction and formal verification, NOVA

WorkFlow is an innovative workflow modeling framework based on the Compensable Workflow

, a formal graphical language proposed by CLI. The framework

and a workflow

The graphical editor provides visual modeling of workflow which ensures correctness by

can make use of many

low version 2.0 which allows

is a domain specific language for workflow

a) a simple syntax for i) writing procedural

statements, ii) querying and manipulating ontologies, iii) designing a rich user interface (UI), iv)

n of

--

Fazle Rabbi, Hao Wang and Wendy MacCaull. "Compensable

Methods (ICFEM 2010).

is architected so that its components could be used to build

ins needed to build a rich client application is

Square: A Domain Specific

. ACM/IEEE 15th International Conference on Model Driven

Engineering Languages & Systems (MODELS 2012), Innsbruck, Austria (September, 2012). Proceedings,

7 | P a g e

We apply transformation methods, based on Xtend

executable software from the abstract task specifications written in T

transformation of T□ code to a software system gives us the confidence that the generated software

components will produce correct workflows, a very essential feature for safety critical systems such as

health care. This approach will help the customization of workflows by dramati

number of lines of code.

The workflow engine let you execute the workflow model built using the editor. The engine is developed

using popular Spring (http://www.springsource.org) and Hibernate (http://hibernate.org) framework.

The workflow engine can run in different platform with various database and web application servers.

Fig 1.1 shows our approach of developing a workflow system.

Fig 1.1: Workflow system

 N O V A W o r k F l o w 2 . 0

e apply transformation methods, based on Xtend (http://www.eclipse.org/xtend), to generate

abstract task specifications written in T□. Ensuring the correct

software system gives us the confidence that the generated software

components will produce correct workflows, a very essential feature for safety critical systems such as

health care. This approach will help the customization of workflows by dramatically reducing the

The workflow engine let you execute the workflow model built using the editor. The engine is developed

using popular Spring (http://www.springsource.org) and Hibernate (http://hibernate.org) framework.

ow engine can run in different platform with various database and web application servers.

1.1 shows our approach of developing a workflow system.

Fig 1.1: Workflow system development approach (NOVA WorkFlow 2.0)

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

, to generate

. Ensuring the correct

software system gives us the confidence that the generated software

components will produce correct workflows, a very essential feature for safety critical systems such as

cally reducing the

The workflow engine let you execute the workflow model built using the editor. The engine is developed

using popular Spring (http://www.springsource.org) and Hibernate (http://hibernate.org) framework.

ow engine can run in different platform with various database and web application servers.

low 2.0)

8 | P a g e

How to install

Product Requirements

Operating system (any one)

� SUN Solaris 2.6, 7, 8, 9 or 10[sparc]

� Linux- Red Hat Enterprise Linux/Fedora, Debian etc

� Windows 2000/2003 Server, Advanced Server

� Windows 2000/XP/Vista/2007

Application Server (any one)

� BEA Weblogic Server 8.1/9

� Resin 3.0.x

� Apache Tomcat 5.0.x

Database Server (any one)

� Oracle 9i Release 9.2

� MySQL 5

� Sybase 12.5 or higher

� PostgreSQL 8

Java Devleopment Kit

� SUN JDK 1.6

Open source software’s

� Spring Framework 1.2

� Hibernate 3.5.4

� Eclipse Indigo 3.7

� Android SDK

 N O V A W o r k F l o w 2 . 0

SUN Solaris 2.6, 7, 8, 9 or 10[sparc]

Red Hat Enterprise Linux/Fedora, Debian etc

Windows 2000/2003 Server, Advanced Server

Windows 2000/XP/Vista/2007

BEA Weblogic Server 8.1/9

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

9 | P a g e

Starting the installation

Download and install Sun JDK 1.6

http://developer.android.com/sdk/index.html

(Version 2.0) from http://logic.stfx.ca/software/nova

configure Android in Eclipse from Window

Fig 1.2

 N O V A W o r k F l o w 2 . 0

Sun JDK 1.6 from http://java.sun.com and Android SDK from

http://developer.android.com/sdk/index.html. Download eclipse with NOVA WorkF

http://logic.stfx.ca/software/nova-workflow/download/. Run eclipse and

configure Android in Eclipse from Window-> Preferences.

Fig 1.2: Configure Android in Eclipse

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

Android SDK from

WorkFlow

. Run eclipse and

10 | P a g e

Workflow components view

To edit the workflow, open Workflow Components View. Workflow Components view

can be found from Window->Show View

view to get an outline of your workflow components.

Where you will find

Fig 1.4 shows the Workflow Components View. Using the tools you can easily edit your

workflow.

 N O V A W o r k F l o w 2 . 0

To edit the workflow, open Workflow Components View. Workflow Components view

>Show View-> Other -> CWML. You can also use the Outline

view to get an outline of your workflow components.

Fig1.3: Open Workflow Components View

shows the Workflow Components View. Using the tools you can easily edit your

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

To edit the workflow, open Workflow Components View. Workflow Components view

> CWML. You can also use the Outline

: Open Workflow Components View

shows the Workflow Components View. Using the tools you can easily edit your

11 | P a g e

What you will see

Import a sample project

Open Eclipse and switch to the workspace directory inside the eclipse installation

(/eclipse/workspace). Import the

workspace directory.

What you will see

 N O V A W o r k F l o w 2 . 0

Fig 1.4: Workflow Components View

switch to the workspace directory inside the eclipse installation

(/eclipse/workspace). Import the sample project named server which may be found inside the

Fig 1.5: Directory Structure of the sample

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

: Workflow Components View

switch to the workspace directory inside the eclipse installation

which may be found inside the

the sample Project.

12 | P a g e

In this sample project server you will find a workflow

under /src/seniorcare directory.

Task specification file

To write details of a task (i.e., task specification)

then click on the ‘Task Property Settings’ from the ‘Workflow Components’ View (

1.7). You will see a task property window. In the task property window you will find a

check box to create a task specification file

 N O V A W o r k F l o w 2 . 0

you will find a workflow named SCWorkflow

under /src/seniorcare directory.

Fig 1.6: SCWorkflow.cwf

(i.e., task specification), select the task by left click

click on the ‘Task Property Settings’ from the ‘Workflow Components’ View (

). You will see a task property window. In the task property window you will find a

task specification file (see Fig 1.8).

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

SCWorkflow (see Fig 1.6)

the task by left clicking on it and

click on the ‘Task Property Settings’ from the ‘Workflow Components’ View (see Fig

). You will see a task property window. In the task property window you will find a

13 | P a g e

Fig 1.7: How to open a task property window

Fig 1.

Selecting the check box will create a task specification file if not already exists. To open

the task specification file, click on the ‘Open Property File’ in the ‘Workflow Component’

view (see Fig 1.9).

 N O V A W o r k F l o w 2 . 0

: How to open a task property window

Fig 1.8: Task property window

electing the check box will create a task specification file if not already exists. To open

click on the ‘Open Property File’ in the ‘Workflow Component’

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

electing the check box will create a task specification file if not already exists. To open

click on the ‘Open Property File’ in the ‘Workflow Component’

14 | P a g e

Where you will find

Import the sample client application

A sample android client application for the

/workspace/server/novaclient directory. Import the

using eclipse import wizard.

 N O V A W o r k F l o w 2 . 0

Fig 1.9: Open an existing task specification file

Import the sample client application

A sample android client application for the SCWorkflow has already been included under

/workspace/server/novaclient directory. Import the novaclient application in your project by

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

: Open an existing task specification file

has already been included under

application in your project by

15 | P a g e

What you will see

A NOVA WorkF

1. Server

2. Client

The client application should physically locate under the server project

directory to automatically generate the files required for the client

application.

To create a new workflow project, t

empty workflow project from

workflow/download/

under the /server/src directory.

 N O V A W o r k F l o w 2 . 0

Fig 1.10 Sample android client application

A NOVA WorkFlow project consists of 2 separate projects:

Server

Client

The client application should physically locate under the server project

directory to automatically generate the files required for the client

application.

To create a new workflow project, the best idea will be to

empty workflow project from http://logic.stfx.ca/software/nova

workflow/download/, and then create a new package and workflows

the /server/src directory.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

Sample android client application

The client application should physically locate under the server project

directory to automatically generate the files required for the client

he best idea will be to download an

logic.stfx.ca/software/nova-

and workflows

16 | P a g e

Create a new Workflow model

Create a package in your source (

want to store your workflow models. Right click on your

Select ‘New Workflow’ wizard and click next. You will see ‘

the name of the workflow (file extension .cwf), author name. Select additional attributes for the

workflow from drop down list. Attributes are described in the following table:

Attribute Value Description

Root Net True During execution, a workflow with Root Net = True will start first.

There can be only one workflow with Root Net = True in your

workflow package.

False A workflow with Root Net = False is a subnet. A subnet can be

decomposed b

task, it is unfolded to a subnet

True

Compensable

True A True compensable workflow can hold only compensable tasks. A

compensable task can only be decomposed to a True compensable

workflow.

False A workflow with True Compensable = False can hold both

compensable and uncompensable task. An uncompensable task

can only be decomposed to this workflow.

 N O V A W o r k F l o w 2 . 0

rkflow model

in your source (src) directory (or use an existing java package) where you

want to store your workflow models. Right click on your package and select New

’ wizard and click next. You will see ‘Create New Workflow

the name of the workflow (file extension .cwf), author name. Select additional attributes for the

workflow from drop down list. Attributes are described in the following table:

Table1.1 Workflow attributes

Description

During execution, a workflow with Root Net = True will start first.

There can be only one workflow with Root Net = True in your

workflow package.

A workflow with Root Net = False is a subnet. A subnet can be

decomposed by a composite task. During execution of a composite

task, it is unfolded to a subnet

A True compensable workflow can hold only compensable tasks. A

compensable task can only be decomposed to a True compensable

workflow.

A workflow with True Compensable = False can hold both

compensable and uncompensable task. An uncompensable task

can only be decomposed to this workflow.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

) directory (or use an existing java package) where you

New -> Example.

Create New Workflow’ Wizard. Enter

the name of the workflow (file extension .cwf), author name. Select additional attributes for the

During execution, a workflow with Root Net = True will start first.

There can be only one workflow with Root Net = True in your

A workflow with Root Net = False is a subnet. A subnet can be

y a composite task. During execution of a composite

A True compensable workflow can hold only compensable tasks. A

compensable task can only be decomposed to a True compensable

A workflow with True Compensable = False can hold both

compensable and uncompensable task. An uncompensable task

17 | P a g e

What you will see

Click Finish to create your first workflow model. An empty workflow model will open in the

editor pane with an Input Condition

 N O V A W o r k F l o w 2 . 0

Fig1.11: Create New Workflow Wizard

to create your first workflow model. An empty workflow model will open in the

Input Condition and an Output Condition.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

: Create New Workflow Wizard

to create your first workflow model. An empty workflow model will open in the

18 | P a g e

Chapter 2

USING THE EDITOR

NOVA WorkFlow comes with a graphical editor for workflow modeling. The workfl

make using this editor will be a structured workflow. The workflow mode

format.

Insert an atomic task

To insert an atomic task in your workflow model use

tools are available in Workflow Components

Where you will find

The Pre-Selection tool will change the color of a node to Green and

change the color of a node to Blue.

Selection, double click on Atomic Task

 N O V A W o r k F l o w 2 . 0

USING THE EDITOR

comes with a graphical editor for workflow modeling. The workfl

a structured workflow. The workflow model is stored in xml

o insert an atomic task in your workflow model use Pre-Selection and Post-Selection

Workflow Components View.

Fig2.1: Pre-Selection and Post-Selection tool

tool will change the color of a node to Green and Post-Selection

change the color of a node to Blue. After selecting two nodes by Pre-Selection and

Atomic Task from the Task list of Workflow Components

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

comes with a graphical editor for workflow modeling. The workflow you will

l is stored in xml

Selection tools. The

Selection tool

Selection tool will

and Post-

Workflow Components.

19 | P a g e

What you will see

Insert a split-join block

To insert a split-join block use the

nodes where you want to insert your block, and then

Workflow Components.

What you will see

You can insert AND, XOR, OR, Parallel Composition, Internal Choice, Alternative Choice,

Speculative Choice block in the same way.

 N O V A W o r k F l o w 2 . 0

Fig2.2: Insert an Atomic Task

use the Pre-Selection and Post-Selection tool as before. Select two

nodes where you want to insert your block, and then double click on the split-join block from

Fig2.3: Insert a Split-Join block

You can insert AND, XOR, OR, Parallel Composition, Internal Choice, Alternative Choice,

Speculative Choice block in the same way.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

tool as before. Select two

join block from

You can insert AND, XOR, OR, Parallel Composition, Internal Choice, Alternative Choice,

20 | P a g e

You cannot insert an uncompensable

block. If you try to insert, you will get an

You cannot insert uncompensable task inside Compensable block”.

Increase number of branches of Split

You can insert a new branch to a split

To do this select the Split task of the block by

and double click on the task that you want to insert in a

Components View.

What you will see

Insert a Loop

To insert a loop around some tasks select two nodes using

Double click on Loop from Workflow Components list.

 N O V A W o r k F l o w 2 . 0

You cannot insert an uncompensable task or block inside a compensable

block. If you try to insert, you will get an Error message “Invalid Selection:

You cannot insert uncompensable task inside Compensable block”.

e number of branches of Split-Join block

You can insert a new branch to a split-join block with an atomic task or another split

To do this select the Split task of the block by Pre-Selection and the Join task by

on the task that you want to insert in a new branch from Workflow

Fig2.4: Insert atomic task in a new branch

loop around some tasks select two nodes using Pre-Selection and Post

from Workflow Components list.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

task or block inside a compensable

“Invalid Selection:

You cannot insert uncompensable task inside Compensable block”.

join block with an atomic task or another split-join block.

and the Join task by Post-Selection

new branch from Workflow

Insert atomic task in a new branch

Post-Selection.

21 | P a g e

What you will see

To insert a loop around a single atomic task, select the atomic task twice

first by Pre-Selection

Edit a task

To edit a task, select it and then click on the

Components View.

Where you will find

This will open a Task Property dialog where you can edit task name, description, author name.

There is a check box for creating Property file; this will be described in the next Chapter.

 N O V A W o r k F l o w 2 . 0

Fig2.5: Insert a Loop

To insert a loop around a single atomic task, select the atomic task twice

Selection tool and then again by Post-Selection

select it and then click on the Task Property Settings tool from Workflow

Fig2.6: Task Property Settings

This will open a Task Property dialog where you can edit task name, description, author name.

There is a check box for creating Property file; this will be described in the next Chapter.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

To insert a loop around a single atomic task, select the atomic task twice-

Selection tool.

tool from Workflow

Task Property Settings

This will open a Task Property dialog where you can edit task name, description, author name.

There is a check box for creating Property file; this will be described in the next Chapter.

22 | P a g e

What you will see

Delete a task

To delete a task or a split-join block, select the task by Pre

delete tool from Workflow Components View. If you select a split task and click this tool, this

will delete the whole block (split, join and all of its bra

Where you will find

 N O V A W o r k F l o w 2 . 0

Fig2.7: Task Property Settings

join block, select the task by Pre-Selection tool, and then click on the

delete tool from Workflow Components View. If you select a split task and click this tool, this

will delete the whole block (split, join and all of its branches).

Fig2.8: Delete task tool

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

Selection tool, and then click on the

delete tool from Workflow Components View. If you select a split task and click this tool, this

Delete task tool

23 | P a g e

Make Composite Task

Select the task (Atomic or Compensable

Make Composite tool from Workflow Components view.

will open from where you can assign the subnet.

Where you will find

What you will see

If you select a

Subnet workflows with

 N O V A W o r k F l o w 2 . 0

Compensable) you want to make composite, and then click on the

tool from Workflow Components view. A Subnet workflow selection dialog

will open from where you can assign the subnet.

Fig2.9: Make Composite tool

Fig2.10: Subnet Workflow Selection Dialog

If you select a Compensable task to make it composite, you will only see

Subnet workflows with True Compensable = True.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

) you want to make composite, and then click on the

workflow selection dialog

Make Composite tool

Subnet Workflow Selection Dialog

composite, you will only see

24 | P a g e

Chapter 3

USING T□ TO WRITE TASK

SPECIFICATION

T□ provides high level syntax for writing task specification. In addition T

of ontologies which allows the user to infer knowledge

using a traditional relational database is the card

representation technique which can represent many complex business r

specification. In contrast to traditional knowledge

well suited for an evolutionary approach to the specification of requirements and dom

knowledge. Software modelling languages and methodol

with ontology languages in various ways, e.g., by reducing language ambiguity, by enabling

validation and automated consistenc

based on ontology reasoning.

 N O V A W o r k F l o w 2 . 0

O WRITE TASK

SPECIFICATION

provides high level syntax for writing task specification. In addition T□ benefits from the use

ontologies which allows the user to infer knowledge. The idea of using an ontology instead of

using a traditional relational database is the cardinal point of T□. Ontologies are knowledge

representation technique which can represent many complex business rules using declarative

In contrast to traditional knowledge-based approaches, ontologies seem to be

well suited for an evolutionary approach to the specification of requirements and dom

. Software modelling languages and methodologies can benefit from the integration

with ontology languages in various ways, e.g., by reducing language ambiguity, by enabling

validation and automated consistency checking. Moreover intelligent applications may be built

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

benefits from the use

The idea of using an ontology instead of

. Ontologies are knowledge

ules using declarative

based approaches, ontologies seem to be

well suited for an evolutionary approach to the specification of requirements and domain

ogies can benefit from the integration

with ontology languages in various ways, e.g., by reducing language ambiguity, by enabling

Moreover intelligent applications may be built

25 | P a g e

Overview of the features of T

� Procedural language features

� Inferred variables

� If Else Statements

� Arithmetic expressions

� Loop

� Function call (call by value / reference)

� Declarative language features

� Supports SQWRL query format to query ontology

� Simplified syntax to manipulate Abox (CRUD operations)

� Integrated with an ontology reasoner

� User interface

� Simplified syntax for UI creation

� Simplified syntax for writing actions

Procedural statements in T□

� Variables in T□ are inferred variables; variable types are determined from their use.

var a, b, c;

a = 10; b = 5;

a = b * c;

� Variables in T□ may be indexed as array indexes but a declaration of the size is not

required. The size is adjusted dynamically at execution time.

var d;

d[5] = 100;

d[3] = 50;

 N O V A W o r k F l o w 2 . 0

T□

Procedural language features

Inferred variables

If Else Statements

Arithmetic expressions

Function call (call by value / reference)

Declarative language features

Supports SQWRL query format to query ontology

fied syntax to manipulate Abox (CRUD operations)

Integrated with an ontology reasoner

Simplified syntax for UI creation

Simplified syntax for writing actions

are inferred variables; variable types are determined from their use.

may be indexed as array indexes but a declaration of the size is not

required. The size is adjusted dynamically at execution time.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

are inferred variables; variable types are determined from their use.

may be indexed as array indexes but a declaration of the size is not

26 | P a g e

� In T□, procedures may be invoked by `call by value' or `call by reference'.

func factorial(n){

 if(n <= 1){

 return n;

 }

 else{

 return factorial(n)* factorial(n

 }

}

� In T□ syntax for the Assignment operation, If

to that for the C family of languages.

func sum(numbers){

 var sum = 0;

 foreach(n in numbers){

 sum = sum + n;

 }

 return sum;

}

� In T□ some utility procedures such as

and tokenize have been incorporated to deal with strings, arrays, dates and times.

Query and manipulate ontologies

Ontologies allow data and rules to be organized efficiently so as to permit the calculation (i.e.,

inference) of implicit knowledge from explicit information. Using ontologies to drive workflows

allows for a more compact representation of the w

(which are often simple to implement) can avoid the need to change the workflow (which can

be more complicated). An important aspect in the design of

 N O V A W o r k F l o w 2 . 0

, procedures may be invoked by `call by value' or `call by reference'.

factorial(n)* factorial(n-1);

syntax for the Assignment operation, If-Else statements, For-loops, etc., are similar

to that for the C family of languages.

numbers){

sum = sum + n;

some utility procedures such as size, today, currentTime, date, month

have been incorporated to deal with strings, arrays, dates and times.

ontologies

Ontologies allow data and rules to be organized efficiently so as to permit the calculation (i.e.,

inference) of implicit knowledge from explicit information. Using ontologies to drive workflows

allows for a more compact representation of the workflow and changes made in an ontology

(which are often simple to implement) can avoid the need to change the workflow (which can

be more complicated). An important aspect in the design of T□ was the facility to query and

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

, procedures may be invoked by `call by value' or `call by reference'.

loops, etc., are similar

month, year, time,

have been incorporated to deal with strings, arrays, dates and times.

Ontologies allow data and rules to be organized efficiently so as to permit the calculation (i.e.,

inference) of implicit knowledge from explicit information. Using ontologies to drive workflows

orkflow and changes made in an ontology

(which are often simple to implement) can avoid the need to change the workflow (which can

was the facility to query and

27 | P a g e

manipulate ontologies. It provide

(U), and Delete (D) operations (CRUD operations) in an ontology.

Query an ontology

One can perform queries combining concepts and facts from the Tbox and/or Abox. The Tbox

describes conceptualizations and contains assertions abou

(Man is a subclass of Person). The Abox contains role

(hasChild(John, Mary)) and membership assertions

 T□ allows us to write queries in the easy

of SQWRL, the `select' operator in

variables used in the pattern specification of the query. A particular value may be passed

query criterion; if a variable is used in an ontology query without a leading question mark (?)

then the value is read by the query engine.

retrieves all persons in an ontology with a pain intensity t

their pain intensities:

var p, pain, v;

v = 5;

{R$ Patient (?p), hasPain(?p, ?pain),

The query engine will populate the variables passed as arguments of the `select' operator.

Selected results may be sorted in ascending (descending) order by the `orderBy'

(`orderByDescending') operator.

Create a new fact

To create a new instance/individual or relation in the ontology Abox, the OntAssertion

statements may be used directly from T

`Patient' individual and inserts a data property for the relation `hasPain'.

var p;

{C$ p := Patient(“Alex”) $C}

{C$ hasPain (p, 6) $C}

 N O V A W o r k F l o w 2 . 0

manipulate ontologies. It provides four different tags to perform Create (C), Read (R), Update

(U), and Delete (D) operations (CRUD operations) in an ontology.

One can perform queries combining concepts and facts from the Tbox and/or Abox. The Tbox

describes conceptualizations and contains assertions about concepts such as subsumption

The Abox contains role assertions between individuals

y)) and membership assertions (John : Man).

rite queries in the easy-to-use SQWRL format. Similar to the `select' operator

QWRL, the `select' operator in T□ takes one or more arguments, which are typically

variables used in the pattern specification of the query. A particular value may be passed

query criterion; if a variable is used in an ontology query without a leading question mark (?)

then the value is read by the query engine. The following query, written in the SQWRL format,

retrieves all persons in an ontology with a pain intensity that is greater than 5, together with

?pain), greaterThan(?pain, v) � select(?p, ?pain)

The query engine will populate the variables passed as arguments of the `select' operator.

Selected results may be sorted in ascending (descending) order by the `orderBy'

(`orderByDescending') operator.

To create a new instance/individual or relation in the ontology Abox, the OntAssertion

statements may be used directly from T□. The following OntAssertion statements create a new

`Patient' individual and inserts a data property for the relation `hasPain'.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

s four different tags to perform Create (C), Read (R), Update

One can perform queries combining concepts and facts from the Tbox and/or Abox. The Tbox

t concepts such as subsumption

assertions between individuals

Similar to the `select' operator

takes one or more arguments, which are typically

variables used in the pattern specification of the query. A particular value may be passed as a

query criterion; if a variable is used in an ontology query without a leading question mark (?)

The following query, written in the SQWRL format,

hat is greater than 5, together with

(?p, ?pain) $R}

The query engine will populate the variables passed as arguments of the `select' operator.

Selected results may be sorted in ascending (descending) order by the `orderBy'

To create a new instance/individual or relation in the ontology Abox, the OntAssertion

. The following OntAssertion statements create a new

28 | P a g e

Note that a reference of the newly created Patient individual is assigned to the variable `p'. An

individual may be created with an auto

a data property named `hasId', where the domain of `hasId' is `Thing' and range is `Long' data

type. The following code shows how to create a new Patient individual with an auto

incremented id.

Delete a fact

OntDel statements may be used to delete an indi

The following code shows how to delete a Patient with id=1010.

var p, pid;

pid = 1010;

{R$ Patient(?p), hasId(?p, ?pid) �

{D$ Patient(p) $D}

In this code fragment, a search operation is performed on an ontology for a

with id=1010 and a reference is retrieved; the Patient individual's reference is then passed as

an argument to the delete operation.

Update a fact

To update a data property or object property

used. Following code fragment shows the use of an update operation. This code fragment

updates the ages of all patients whose birthday is today.

var p, P, bDate, Age, age, newAge, cDate;

cDate = today();

{R$ Patient(?P), hasBirthDate(?P, ?bDate),

select(?P, ?Age) $R}

foreach (p in P, age in Age){

 newAge = age + 1;

 {U$ hasAge(p , age => p, newAge)

}

 N O V A W o r k F l o w 2 . 0

Note that a reference of the newly created Patient individual is assigned to the variable `p'. An

individual may be created with an auto-incremented identity (id) if in the ontology there exists

a data property named `hasId', where the domain of `hasId' is `Thing' and range is `Long' data

type. The following code shows how to create a new Patient individual with an auto

OntDel statements may be used to delete an individual or a relation from an ontology ABox.

The following code shows how to delete a Patient with id=1010.

� select(?p) $R}

In this code fragment, a search operation is performed on an ontology for a Patient individual

1010 and a reference is retrieved; the Patient individual's reference is then passed as

an argument to the delete operation.

data property or object property of an individual, OntUpdate statements may be

used. Following code fragment shows the use of an update operation. This code fragment

updates the ages of all patients whose birthday is today.

Age, cDate;

Patient(?P), hasBirthDate(?P, ?bDate), isEqual(?bDate, cDate), hasAge(?P, ?Age)

hasAge(p , age => p, newAge) $U}

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

Note that a reference of the newly created Patient individual is assigned to the variable `p'. An

incremented identity (id) if in the ontology there exists

a data property named `hasId', where the domain of `hasId' is `Thing' and range is `Long' data

type. The following code shows how to create a new Patient individual with an auto-

or a relation from an ontology ABox.

Patient individual

1010 and a reference is retrieved; the Patient individual's reference is then passed as

of an individual, OntUpdate statements may be

used. Following code fragment shows the use of an update operation. This code fragment

ate, cDate), hasAge(?P, ?Age) �

29 | P a g e

Design User Interface

To print a text or a number in a UI, the

procedure produces a `Label' view component in the UI. One can pass either a string literal or a

variable as argument of the getLabel

a `Label' view component. Whenever this variable is updated, the change is reflected in the

`Label'.

var wid;

wid = 112;

getLabel(‘‘WorkflowInstance:’’);

getLabel(wid);

This code fragment produces two labels; during execution, th

“Workflow Instance:” and the second label will display the number `112'.

The getText procedure produces a ‘Text Field’ view component. A ‘Text Field’

component to take user input. The

string to produce a label, and ii) a variable (optional) to

destination variable name after the symbol ‘>>’

captured by the destination variable. Optionally, some statements (also known as action

statements) may be written inside curly braces after the destination var

procedure. These action statements will be executed when a us

‘Text Field’. The following code fragment uses the

var hospitalName, displayText;

displayText = “No Input”;

getText(‘‘Enter Hospital Name:’’) >> hospitalName{

displayText = “Hospital: ’’+ hospitalName; };

getLabel(“Entered Text: ’’, displayText);

This produces a ‘Text Field’ where the user will enter text input; the entered text will be stored

in a variable named ‘hospitalName’

Field' the action statement (enclosed with a curly bracket) will execute and assigns a value

entered by the user to the variable named ‘displayText’

bound to a ‘Label’, when its value changes, the ‘Label’

 N O V A W o r k F l o w 2 . 0

text or a number in a UI, the getLabel procedure may be used. The getLabel

procedure produces a `Label' view component in the UI. One can pass either a string literal or a

getLabel procedure. If a variable is passed, the variable is bound to

Whenever this variable is updated, the change is reflected in the

This code fragment produces two labels; during execution, the first label will display the text

and the second label will display the number `112'.

procedure produces a ‘Text Field’ view component. A ‘Text Field’ is a common UI

The getText procedure can take one or two arguments: i) a

string to produce a label, and ii) a variable (optional) to display the initial text in a ‘Text Field’

ariable name after the symbol ‘>>’ is required for a getText. The user input is

destination variable. Optionally, some statements (also known as action

statements) may be written inside curly braces after the destination variable name of a

procedure. These action statements will be executed when a user finishes her entry into

. The following code fragment uses the getLabel and getText procedures:

hospitalName, displayText;

(‘‘Enter Hospital Name:’’) >> hospitalName{

displayText = “Hospital: ’’+ hospitalName; };

“Entered Text: ’’, displayText);

where the user will enter text input; the entered text will be stored

a variable named ‘hospitalName’. As soon as the user finishes entering text into the `Text

enclosed with a curly bracket) will execute and assigns a value

the variable named ‘displayText’. Since the variable ‘displayText’

‘Label’, when its value changes, the ‘Label’ view component will be updated and will

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

getLabel

procedure produces a `Label' view component in the UI. One can pass either a string literal or a

e variable is bound to

Whenever this variable is updated, the change is reflected in the

t label will display the text

is a common UI

n take one or two arguments: i) a

display the initial text in a ‘Text Field’. A

. The user input is

destination variable. Optionally, some statements (also known as action

iable name of a getText

er finishes her entry into the

procedures:

where the user will enter text input; the entered text will be stored

. As soon as the user finishes entering text into the `Text

enclosed with a curly bracket) will execute and assigns a value

Since the variable ‘displayText’ is

view component will be updated and will

30 | P a g e

display the hospital name entered in the ‘Text Field’

‘Password Field’ view component where the input characters are displayed as dots on the

screen. The other functionalities of a ‘Password Field’

The getInteger procedure is similar to the

take input from the user, but the difference is that only numbers are allowed here. The

following code fragment gives an example:

var basicPay, hourlyPay, totalHr, totalSalary;

basicPay = 14; totalHr = 0; totalSalary = 0;

getInteger(‘‘Hourly Payment: $’’, basicPay) >> hourlyPay{

totalSalary = hourlyPay * totalHr; };

getInteger(‘‘Total Hour Worked: ’’) >> totalHr{

totalSalary = hourlyPay * totalHr; };

getLabel(“Total Salary: $”, totalSalary);

The first ‘Text Field’ will display the value of the ‘basicPay’

change it by inserting a different number; the entered number will b

named ‘hourlyPay’. The user can also enter the total hours wor

Whenever the user finishes entering numbers in either of the ‘Text Fields’

calculated and displayed in the UI by a ‘Label’

The getDouble and getDate procedures are similar to the

floating point number and date respectively. The

getText procedure but it produces a ‘Text Area’

Field’. The getDate procedure is similar to the

date in a ‘Text Field’. The getBoolean

for a ‘Check box’ (a view component to

select the ‘Check box’ and a true or false value is assigned to the associated destination variable

of a getBoolean procedure. If action statements are written for a

will be executed after the user selects or de

var painCrisis;

getBoolean(‘‘PainCrisis:’’) >> painCrisis;

 N O V A W o r k F l o w 2 . 0

name entered in the ‘Text Field’. The getPassword procedure produces a

view component where the input characters are displayed as dots on the

The other functionalities of a ‘Password Field’ are the same as those for a ‘Text Field’

procedure is similar to the getText procedure; this also produces a ‘Text Field’

take input from the user, but the difference is that only numbers are allowed here. The

following code fragment gives an example:

basicPay, hourlyPay, totalHr, totalSalary;

basicPay = 14; totalHr = 0; totalSalary = 0;

(‘‘Hourly Payment: $’’, basicPay) >> hourlyPay{

totalSalary = hourlyPay * totalHr; };

(‘‘Total Hour Worked: ’’) >> totalHr{

* totalHr; };

(“Total Salary: $”, totalSalary);

The first ‘Text Field’ will display the value of the ‘basicPay’ variable which is ‘14’

change it by inserting a different number; the entered number will be stored in the variable

. The user can also enter the total hours worked in the second ‘Text Field’

ering numbers in either of the ‘Text Fields’ the total salary is

displayed in the UI by a ‘Label’.

procedures are similar to the getInteger; here the user can enter a

floating point number and date respectively. The getTextMultiple procedure is similar to the

procedure but it produces a ‘Text Area’ (for multiline text input) instead of

procedure is similar to the getInteger procedure but here the user

getBoolean procedure takes one argument as input to display a title

(a view component to select or de-select an item). The user may select or de

and a true or false value is assigned to the associated destination variable

procedure. If action statements are written for a getBoolean procedure, they

the user selects or de-selects a check box item.

(‘‘PainCrisis:’’) >> painCrisis;

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

procedure produces a

view component where the input characters are displayed as dots on the

or a ‘Text Field’.

rocedure; this also produces a ‘Text Field’ to

take input from the user, but the difference is that only numbers are allowed here. The

variable which is ‘14’. The user may

e stored in the variable

ked in the second ‘Text Field’.

the total salary is

; here the user can enter a

procedure is similar to the

iline text input) instead of a ‘Text

procedure but here the user enters a

input to display a title

er may select or de-

and a true or false value is assigned to the associated destination variable

procedure, they

31 | P a g e

The above code fragment will display a ‘Check box’

‘Check box’ is ‘painCrisis’ which will be assigne

selection of the ‘Check box’. Since the ‘painCrisis’ variable is bound to a ‘Check box’

component, if the value is changed from another portion of the procedure, it will be reflected in

the UI. This feature may be useful to display a form to update existing information. For example

if we want to display a patient's existing Pain Crisis information and allow the user to modify it,

we can use the following code:

var painCrisis, id, p;

id = 1010;

getBoolean(‘‘PainCrisis:’’) >> painCrisis;

{R$ Patient(?p), hasId(?p, id), hasPainCrisis(?p, ?painCrisis)

The getOne procedure is used to select one item from a list of items. This p

display a ‘Drop Down’ view component (if one source variable

‘Table’ with ‘Radio buttons’ (if more than one source variable is provided). The user cannot

select more than one item from the displayed list. A destination variable name is required fo

getOne procedure where the selected item (user input) will be stored. Optionally another

destination variable name may be mentioned to store the position of the item selected from

the source variable. If action statements are given for a

executed as soon as the user selects an item. In the following example a list of countries is

retrieved from an ontology by performing the read operation.

display the list of country in a ‘Drop Down’

of provinces in another ‘Drop Down’

another, on the selection of a country, a further query is performed on the ontology to retrieve

related province information; this is done in the action statements. The

bound as the source variable with the second

information were updated they will be reflected in the ‘Drop Down’

var c, country, province, selectedProvince;

{R$ Country(?c) � select(?c) $R}

getOne(‘‘Country:’’, c) >> country{

 {R$ Province(?province), hasCountry(?province, coun

};

getOne(“Province:”, province) >> selectedProvince;

 N O V A W o r k F l o w 2 . 0

e code fragment will display a ‘Check box’ in the UI. The destination variable of the

‘Check box’ is ‘painCrisis’ which will be assigned with a ‘true’ or ‘false’ value dep

Since the ‘painCrisis’ variable is bound to a ‘Check box’

component, if the value is changed from another portion of the procedure, it will be reflected in

ature may be useful to display a form to update existing information. For example

if we want to display a patient's existing Pain Crisis information and allow the user to modify it,

(‘‘PainCrisis:’’) >> painCrisis;

hasPainCrisis(?p, ?painCrisis) � select(?painCrisis)

procedure is used to select one item from a list of items. This procedure will either

view component (if one source variable is provided as argument) or a

(if more than one source variable is provided). The user cannot

select more than one item from the displayed list. A destination variable name is required fo

procedure where the selected item (user input) will be stored. Optionally another

destination variable name may be mentioned to store the position of the item selected from

the source variable. If action statements are given for a getOne procedure, they will be

executed as soon as the user selects an item. In the following example a list of countries is

retrieved from an ontology by performing the read operation. A getOne procedure is used to

splay the list of country in a ‘Drop Down’. Another getOne procedure is used to display a list

‘Drop Down’. Since the provinces are different from one country to

another, on the selection of a country, a further query is performed on the ontology to retrieve

ion; this is done in the action statements. The ‘province’

bound as the source variable with the second getOne procedure; as a result, if provinces'

they will be reflected in the ‘Drop Down’.

e, selectedProvince;

$R}

(‘‘Country:’’, c) >> country{

Province(?province), hasCountry(?province, country) � select(?province)

(“Province:”, province) >> selectedProvince;

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

on variable of the

value depending on the

Since the ‘painCrisis’ variable is bound to a ‘Check box’ view

component, if the value is changed from another portion of the procedure, it will be reflected in

ature may be useful to display a form to update existing information. For example

if we want to display a patient's existing Pain Crisis information and allow the user to modify it,

(?painCrisis) $R}

rocedure will either

is provided as argument) or a

(if more than one source variable is provided). The user cannot

select more than one item from the displayed list. A destination variable name is required for a

procedure where the selected item (user input) will be stored. Optionally another

destination variable name may be mentioned to store the position of the item selected from

re, they will be

executed as soon as the user selects an item. In the following example a list of countries is

procedure is used to

procedure is used to display a list

. Since the provinces are different from one country to

another, on the selection of a country, a further query is performed on the ontology to retrieve

‘province’ variable is

procedure; as a result, if provinces'

select(?province) $R}

32 | P a g e

Note that the ‘source’ variable fills a ‘Drop Down’

one item from the items available in the ‘Drop Down’ we may use the ‘destination’

instance, in a patient’s admission record update form,

province in the ‘Drop Down’; this can be achieved by assigning the name of the province to the

destination variable.

The getMultiple procedure is similar to the

more than one item from the source variab

displayed in a list of Check Boxes or in a `Table' with `Check Boxes' (for more than one source

variable).

var ref, refName, referral;

{R$ Referral(?ref), hasName(?ref,?refName)

getMultiple (‘‘Referral:’’,refName) >> referral;

This code shows a use of a getMultiple

ontology which is used as the source which the

UI. From the displayed referral information, the user might select more than one referral. The

selected referrals will be stored inside

The getButton procedure produces a button in the UI. When a button is pressed, the

statements associated with it are executed. For example, if we want to calculate the strength of

a given password then a button may be used to do the activity.

var password, result;

getPassword(‘‘Enter Password’’) >> password ;

getButton(‘‘Check Password Strength’’

result = checkPwStrength(password);

print(result);

}

When the button “Check Password Strength”

checkPwStrenth at the server with ‘password’

provides two procedures to arrange the view components in the UI; namely

closeLayout. The openLayout procedure takes an integer parameter which indicates the

number of columns. All view components mentioned after a

 N O V A W o r k F l o w 2 . 0

variable fills a ‘Drop Down’ view component but if we want to display

rom the items available in the ‘Drop Down’ we may use the ‘destination’

s admission record update form, we want to display the patient’s ex

; this can be achieved by assigning the name of the province to the

procedure is similar to the getOne procedure but here the user may select

more than one item from the source variable(s). The values of the source variable(s) are either

displayed in a list of Check Boxes or in a `Table' with `Check Boxes' (for more than one source

(?ref), hasName(?ref,?refName) � select(?refName) $R}

(‘‘Referral:’’,refName) >> referral;

getMultiple procedure. A list of referrals is retrieved from an

ontology which is used as the source which the getMultiple procedure uses and displays in the

ed referral information, the user might select more than one referral. The

selected referrals will be stored inside the destination variable named ‘referral’

procedure produces a button in the UI. When a button is pressed, the

sociated with it are executed. For example, if we want to calculate the strength of

a given password then a button may be used to do the activity.

(‘‘Enter Password’’) >> password ;

(‘‘Check Password Strength’’) {

result = checkPwStrength(password);

When the button “Check Password Strength” is pressed it invokes a procedure named

at the server with ‘password’ as argument and prints the result in the UI.

provides two procedures to arrange the view components in the UI; namely openLayout

procedure takes an integer parameter which indicates the

number of columns. All view components mentioned after a openLayout procedure will

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

view component but if we want to display

rom the items available in the ‘Drop Down’ we may use the ‘destination’ variable. For

we want to display the patient’s existing

; this can be achieved by assigning the name of the province to the

procedure but here the user may select

le(s). The values of the source variable(s) are either

displayed in a list of Check Boxes or in a `Table' with `Check Boxes' (for more than one source

procedure. A list of referrals is retrieved from an

procedure uses and displays in the

ed referral information, the user might select more than one referral. The

the destination variable named ‘referral’.

procedure produces a button in the UI. When a button is pressed, the

sociated with it are executed. For example, if we want to calculate the strength of

is pressed it invokes a procedure named

as argument and prints the result in the UI. T□

openLayout and

procedure takes an integer parameter which indicates the

procedure will follow

33 | P a g e

this arrangement. A closeLayout

by an openLayout procedure. An

openLayout procedure; in this way a complex table layout structure may be ach

Server vs. Client side code

Workflow developers are allowed to write specifications for tasks using T

may write procedures inside a task specification file. Since the specifications are translated into

executable java code, the compiler scan

the UI interfaces (i.e., Forms); other procedures

Below is a description of how different procedure names

Table 3.1: List of procedure names and how th

Procedure name Parameters

view 0

action User defined

0

getDelay 0

getDuration 0

getUserRoles 0

 N O V A W o r k F l o w 2 . 0

closeLayout procedure stops putting view components in the order started

procedure. An openLayout procedure can be nested with another

procedure; in this way a complex table layout structure may be ach

Workflow developers are allowed to write specifications for tasks using T□ syntax. A developer

may write procedures inside a task specification file. Since the specifications are translated into

compiler scans the code for procedures named view()

other procedures are used to generate server side components.

different procedure names are interpreted in NOVA WorkF

.1: List of procedure names and how they are interpreted in NOVA WorkF

Parameters Description

All the statements or code written in a procedure named view() will

be transformed to a UI-Form.

If a view() procedure is provided for a task, the action() procedure is

invoked from the vew() procedure by a submit() function call.

Workflow developers are allowed to specify the number of

parameters for such an action() procedure.

If a view() procedure is not provided for a task then the action()

procedure is invoked by the workflow engine as soon as the task

becomes enabled. The workflow engine will invoke the action

procedure with 0 parameters.

Workflow developer may specify the delay time

task in this procedure. This method should return number values.

Workflow developer may specify the duration time constraints

task in this procedure. This method should return number values

Workflow developers may specify the name of the roles who are

allowed to access the task. This method should return array of

strings.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

procedure stops putting view components in the order started

procedure can be nested with another

procedure; in this way a complex table layout structure may be achieved.

syntax. A developer

may write procedures inside a task specification file. Since the specifications are translated into

() to generate

used to generate server side components.

interpreted in NOVA WorkFlow.

ey are interpreted in NOVA WorkFlow

All the statements or code written in a procedure named view() will

) procedure is provided for a task, the action() procedure is

invoked from the vew() procedure by a submit() function call.

Workflow developers are allowed to specify the number of

not provided for a task then the action()

procedure is invoked by the workflow engine as soon as the task

becomes enabled. The workflow engine will invoke the action

Workflow developer may specify the delay time constraints for a

task in this procedure. This method should return number values.

time constraints for a

his method should return number values.

evelopers may specify the name of the roles who are

allowed to access the task. This method should return array of

34 | P a g e

accessPolicy 0

getBranchCondition 2

(wInstanceId, brNo)

preCondition 0

 N O V A W o r k F l o w 2 . 0

The access policy for a task may be specified in this procedure.

Before invoking the action() procedure the workflo

consult this procedure. If this procedure returns false, the access

will be rejected.

(wInstanceId, brNo)

The branching conditions for XOR, OR, Loop Split tasks are written in

this procedure. The workflow engine will consult this procedure to

determine which branches are active/inactive.

If a precondition() procedure is provided it will be consulted to

determine if a task is enabled or not. If this procedure returns false,

the task will not be displayed in the worklist window.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

The access policy for a task may be specified in this procedure.

Before invoking the action() procedure the workflow engine will

consult this procedure. If this procedure returns false, the access

The branching conditions for XOR, OR, Loop Split tasks are written in

consult this procedure to

) procedure is provided it will be consulted to

determine if a task is enabled or not. If this procedure returns false,

the task will not be displayed in the worklist window.

35 | P a g e

Chapter 4

using the workflow engine

NOVA WorkFlow engine is a flexible workflow

framework. You may deploy the engine into different application servers. However the sample

application shipped with NOVA WorkF

Configure your project for deployment

A database script (dbcwf.sql) has been provided in the sample application which includes the

sql statements to create few tables in a database. The script may be found in

/eclipse/workspace/server/ directory. You have to import the s

the script will create a database named ‘dbcwf’ and

workflow engine.

Click on the ‘Workflow settings’ button in the ‘Workflow Components’

will open a ‘Workflow Settings’ window (see Fig 4.2).

Where you will find

 N O V A W o r k F l o w 2 . 0

using the workflow engine

engine is a flexible workflow engine developed in the Spring & Hibernate

framework. You may deploy the engine into different application servers. However the sample

lication shipped with NOVA WorkFlow is using Tomcat servlet container.

for deployment

.sql) has been provided in the sample application which includes the

sql statements to create few tables in a database. The script may be found in

/eclipse/workspace/server/ directory. You have to import the script in a relational

the script will create a database named ‘dbcwf’ and will create the required tables for the

Click on the ‘Workflow settings’ button in the ‘Workflow Components’ view (ee Fig 4.1). This

Settings’ window (see Fig 4.2).

Fig 4.1: Workflow Settings button

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

using the workflow engine

& Hibernate

framework. You may deploy the engine into different application servers. However the sample

.sql) has been provided in the sample application which includes the

relational database:

create the required tables for the

view (ee Fig 4.1). This

Fig 4.1: Workflow Settings button

36 | P a g e

Fig 4.2: Workflow settings (Deployment configuration)

You have to provide the following details to configure the workflow engine and the client

application:

Parameter Description

Ontology File Location The workflow engine will try to access (read and write) an ontology

file. As

persist information, the engine will require an owl ontology fil

the sample application, an ontology file has been provided in the

following location:

/eclipse/workspace/server/apache

6.0.35/webapps/novaserver/WEB

 N O V A W o r k F l o w 2 . 0

Fig 4.2: Workflow settings (Deployment configuration)

You have to provide the following details to configure the workflow engine and the client

Description

The workflow engine will try to access (read and write) an ontology

file. As you already know that NOVA WorkFlow uses an ontology to

persist information, the engine will require an owl ontology fil

the sample application, an ontology file has been provided in the

following location:

/eclipse/workspace/server/apache-tomcat-

6.0.35/webapps/novaserver/WEB-INF/data/palcare

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

You have to provide the following details to configure the workflow engine and the client

The workflow engine will try to access (read and write) an ontology

low uses an ontology to

persist information, the engine will require an owl ontology file. For

the sample application, an ontology file has been provided in the

.owl

37 | P a g e

Ontology Prefix The prefix that should be used while you are querying a

manipulating your ontology using T

that we have talked about a concept ‘Patient’ but typically in an

ontology, it has a prefix, such as,

http://www.

Base URI The client application will use RestF

with the workflow engine. The web address of the server has to be

specified in this field. If you are using the sample application, you

may write down the following URI in this field:

http://<yourip>:8080/novaserver/

Database URL The states of the workflow will be stored in a database. And the

workflow engine will use hibernate to access the database.

Database UserName The username of your relational database

Database Password The password of your relational database

How to deploy

Click on Create Service Class tool from your Workflow Components view.

Where you will find

For each of the task of your workflow a service class will

mapping files; an applicationContext.xml file will be generated that is required for the

execution of workflow engine.

 N O V A W o r k F l o w 2 . 0

The prefix that should be used while you are querying a

manipulating your ontology using T□. In Chapter 3 you have seen

that we have talked about a concept ‘Patient’ but typically in an

ontology, it has a prefix, such as,

http://www.palominosys.com/palcare.owl#

The client application will use RestFul webservice to communicate

with the workflow engine. The web address of the server has to be

specified in this field. If you are using the sample application, you

may write down the following URI in this field:

http://<yourip>:8080/novaserver/

The states of the workflow will be stored in a database. And the

workflow engine will use hibernate to access the database.

The username of your relational database

The password of your relational database

tool from your Workflow Components view.

Fig4.3: Tool for generating Service Class

or each of the task of your workflow a service class will be generated. Some hibernate

an applicationContext.xml file will be generated that is required for the

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

The prefix that should be used while you are querying and

. In Chapter 3 you have seen

that we have talked about a concept ‘Patient’ but typically in an

ul webservice to communicate

with the workflow engine. The web address of the server has to be

specified in this field. If you are using the sample application, you

The states of the workflow will be stored in a database. And the

workflow engine will use hibernate to access the database.

Tool for generating Service Class

Some hibernate

an applicationContext.xml file will be generated that is required for the

38 | P a g e

By clicking the tool will also configure the client application as well and everything should be

ready to start. Start the tomcat server first by exec

found from eclipse/workspace/server/apache

You can either start the client application

emulator.

Play with the application

The client application has a default user management screen. You may create new user

and assign roles to users. The default administrator’s userid and password is

superadmin/123456. You can change it from the user management control panel if you wish.

start working with your workflow, you will have to create a workflow instance. Once you have

created a new workflow instance, you will see

From the worklist window you can access the tasks. If you subm

that information will go to the server and the action() procedure will be invoked. The workflow

engine will update the task status and will update the worklist window as well.

 N O V A W o r k F l o w 2 . 0

By clicking the tool will also configure the client application as well and everything should be

ready to start. Start the tomcat server first by executing startup.bat / startup.sh which may be

eclipse/workspace/server/apache-tomcat-6.0.35/bin directory.

You can either start the client application (novaclient) in an android device or an android

client application has a default user management screen. You may create new user

to users. The default administrator’s userid and password is

admin/123456. You can change it from the user management control panel if you wish.

start working with your workflow, you will have to create a workflow instance. Once you have

created a new workflow instance, you will see the list of available tasks in the worklist

window you can access the tasks. If you submit any information from a Form,

that information will go to the server and the action() procedure will be invoked. The workflow

engine will update the task status and will update the worklist window as well.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 2 . 0

By clicking the tool will also configure the client application as well and everything should be

uting startup.bat / startup.sh which may be

in an android device or an android

client application has a default user management screen. You may create new users, roles

admin/123456. You can change it from the user management control panel if you wish. To

start working with your workflow, you will have to create a workflow instance. Once you have

worklist window.

it any information from a Form,

that information will go to the server and the action() procedure will be invoked. The workflow

