

User Manual

 Copyright Centre for Logic and Information

NOVANOVANOVANOVA

WorkFlow

User Manual
(version 0.1)

Centre for Logic and Information (CLI), 2010

NOVANOVANOVANOVA

WorkFlow

User Manual

, 2010

2 | P a g e

NOVA WorkFlow User Documentation

Version 0.1 / 2010 August

Author: Fazle Rabbi

Reviewer: Hao Wang, Janet Norgrove

COPYRIGHT © Centre for Logic and Information

assumes no responsibility for any errors or omissions that may appear in this

document. The contents of this document must not be reproduced in any form

whatsoever without prior written consent

Centre for Logic and Information

St. Francis Xavier University

St Mary’s Street

Antigonish, NS Canada

B2G 2A5

Home page: www.logic.stfx.ca

 N O V A W o r k F l o w 0 . 1

NOVA WorkFlow User Documentation

Reviewer: Hao Wang, Janet Norgrove

ntre for Logic and Information (CLI). All rights reserved. CLI

responsibility for any errors or omissions that may appear in this

The contents of this document must not be reproduced in any form

without prior written consent from CLI.

Centre for Logic and Information

St. Francis Xavier University

www.logic.stfx.ca

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

. All rights reserved. CLI

responsibility for any errors or omissions that may appear in this

The contents of this document must not be reproduced in any form

3 | P a g e

ACKNOWLEDGMENT

This work is sponsored by Natural Sciences and Engineering Research Council

(NSERC), by an Atlantic Computational Excellence Network (ACEnet)

Fellowship and by the Atlantic Canada Opportunities Agency

Innovation Fund.

 N O V A W o r k F l o w 0 . 1

is sponsored by Natural Sciences and Engineering Research Council of

C), by an Atlantic Computational Excellence Network (ACEnet) Post Doctoral Research

Fellowship and by the Atlantic Canada Opportunities Agency (ACOA) through the Atlantic

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

f Canada

Post Doctoral Research

(ACOA) through the Atlantic

4 | P a g e

TABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTS

CHAPTER/SECTION

CHAPTER 1...

Introduction...

 Product Overview...

 How to install...

 Starting the installation...

 Create a project...

 Create a workflow model

 Workflow Components View

CHAPTER 2...

Using the editor..

 Insert an atomic task...

 Insert a split-join block..

 Increase number of branches of Split

 Insert a Loop...

 Add an Error Handler...

 Add a Programmable Compensation

 Edit a task...

 Delete a task..

 Make Composite Task...

CHAPTER 3...

Using the translator for formal Verification............

 N O V A W o r k F l o w 0 . 1

TABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTS

..

...

...

..

...

...

workflow model..

Workflow Components View..

..

...

...

..

e number of branches of Split-Join block..

...

..

Add a Programmable Compensation..

..

..

...

...

Verification..

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

TABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTSTABLE OF CONTENTS

PAGE

 7

7

 7

 8

 9

 9

 9

11

13

13

13

14

15

15

16

17

17

18

19

20

20

5 | P a g e

 Supported Data types..

 Create Task Property File

 More about task property file

 Variable Declaration..

 Data abstraction...................

 Syntax..

 Translation Principle........................

 Review Branch Order and Condition

 Translate the model...

 How to do the Reduction

 Syntax for Writing LTL property File

CHAPTER 4...

Using the workflow engine...

 Configure your project...

 Generate service classes..

 How to work with the service classes

 Extend service classes..

 Invoke services from outside

 Configure a service for Automatic or Manual execution

 How to implement IBranchCondition Interface

 WorkFlow Engine Service

 How to get the WorkFlow Engine Service

 How to Deploy.......................

CHAPTER 5...

 N O V A W o r k F l o w 0 . 1

..

Create Task Property File..

t task property file...

..

..

..

...

Review Branch Order and Condition..

...

How to do the Reduction...

Syntax for Writing LTL property File..

..

...

...

..

work with the service classes..

..

Invoke services from outside...

Configure a service for Automatic or Manual execution...................................

How to implement IBranchCondition Interface...

WorkFlow Engine Service...

How to get the WorkFlow Engine Service..

...

..

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

20

21

24

24

25

26

28

28

29

30

30

32

32

32

33

36

36

37

37

38

39

40

41

42

6 | P a g e

DEMO...

 Use Case Scenario..

 Workflows in pc_demo...

 How to run..

 Play with the application

 N O V A W o r k F l o w 0 . 1

...

...

...

..

Play with the application..

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

42

42

43

44

44

7 | P a g e

Chapter 1

introduction

Product Overview

Developed with understanding of compensable transaction and formal verification, NOVA

WorkFlow is an innovative workflow modeling framework based on the Compensable Workflow

Modeling Language (CWML)
1
, a formal graphical language proposed by CLI. The framew

consists of a graphical editor, a translator and a workflow engine.

The graphical editor provides visual modeling of workflow which ensures correctness by

construction. The editor is developed as an Eclipse RCP plug

UI features provided by Eclipse and install the editor in different OS platform.

The translator can automatically translate a workflow model to

of a model checker3. After building a model using our editor, you only needs to click on a action

button and will obtain a translated model for simulation and verification in the model checker.

As workflow models in reality ca

verification time, the translator incorporates a model reduction

verification time while maintaining the equivalence of the original model and the reduced one.

The workflow engine let you execute the verified workflow model built using the editor

engine is developed using popular Sprin

(http://hibernate.org) framework with a

workflow engine can run in different platform with various database and web ap

servers.

1
 For details on CWML, please refer to Fazle Rabbi, Hao Wang and Wendy MacCaull. "Compensable WorkFlow Net". The 12th

International Conference on Formal Engineering

2
 Eclipse, a popular and powerful Java IDE,

just about any client application. The minimal set of plug

collectively known as the Rich Client Platform

3
 Currently we use the model checker

support to other model checkers in the near future.

 N O V A W o r k F l o w 0 . 1

introduction

Developed with understanding of compensable transaction and formal verification, NOVA

WorkFlow is an innovative workflow modeling framework based on the Compensable Workflow

, a formal graphical language proposed by CLI. The framew

consists of a graphical editor, a translator and a workflow engine.

The graphical editor provides visual modeling of workflow which ensures correctness by

construction. The editor is developed as an Eclipse RCP plug-in
2
, so you can make use of many

features provided by Eclipse and install the editor in different OS platform.

The translator can automatically translate a workflow model to a model in the input language

of a model checker3. After building a model using our editor, you only needs to click on a action

button and will obtain a translated model for simulation and verification in the model checker.

As workflow models in reality can be rather huge and complicated, resulting in unbearable long

ication time, the translator incorporates a model reduction algorithm accelerate

cation time while maintaining the equivalence of the original model and the reduced one.

The workflow engine let you execute the verified workflow model built using the editor

engine is developed using popular Spring (http://www.springsource.org) and Hibernate

framework with a good understanding of current J2EE framework. The

workflow engine can run in different platform with various database and web ap

Fazle Rabbi, Hao Wang and Wendy MacCaull. "Compensable WorkFlow Net". The 12th

International Conference on Formal Engineering Methods (ICFEM 2010).

Eclipse, a popular and powerful Java IDE, is architected so that its components could be used to build

just about any client application. The minimal set of plug-ins needed to build a rich client application is

h Client Platform (RCP).

ecker DiVinE (http://divine.fi.muni.cz/), The framework will provide

support to other model checkers in the near future.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

Developed with understanding of compensable transaction and formal verification, NOVA

WorkFlow is an innovative workflow modeling framework based on the Compensable Workflow

, a formal graphical language proposed by CLI. The framework

The graphical editor provides visual modeling of workflow which ensures correctness by

, so you can make use of many

a model in the input language

of a model checker3. After building a model using our editor, you only needs to click on a action

button and will obtain a translated model for simulation and verification in the model checker.

n be rather huge and complicated, resulting in unbearable long

accelerate the

cation time while maintaining the equivalence of the original model and the reduced one.

The workflow engine let you execute the verified workflow model built using the editor. The

and Hibernate

current J2EE framework. The

workflow engine can run in different platform with various database and web application

Fazle Rabbi, Hao Wang and Wendy MacCaull. "Compensable WorkFlow Net". The 12th

is architected so that its components could be used to build

ins needed to build a rich client application is

The framework will provide

8 | P a g e

How to install

Product Requirements

Operating system (any one)

� SUN Solaris 2.6, 7, 8, 9 or 10[sparc]

� Linux- Red Hat Enterprise Linux/Fedora, Debian etc

� Windows 2000/2003 Server, Advanced Server

� Windows 2000/XP/Vista/2007

Application Server (any one)

� BEA Weblogic Server 8.1/9

� Resin 3.0.x

� Apache Tomcat 5.0.x

Database Server (any one)

� Oracle 9i Release 9.2

� MySQL 5

� Sybase 12.5 or higher

� PostgreSQL 8

Java Devleopment Kit

� SUN JDK 1.5

Model Checker

� DiVinE

Open source software’s

� Spring Framework 1.2

 N O V A W o r k F l o w 0 . 1

SUN Solaris 2.6, 7, 8, 9 or 10[sparc]

Red Hat Enterprise Linux/Fedora, Debian etc

erver, Advanced Server

Windows 2000/XP/Vista/2007

BEA Weblogic Server 8.1/9

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

9 | P a g e

� Hibernate 3.5.4

� Eclipse Galileo 3.5

Starting the installation

Download and install Sun JDK 1.5 from

http://www.eclipse.org . Download NOVA Workflow plugin

http://logic.stfx.ca/novaworkflow

Create a project

Open Eclipse and create a Java Project

Download cwf.jar from http://logic.stfx.ca/novaworkflow

cwf.jar into your Build Path.

What you will see

Create a Workflow model

Create a package in your source

Right click on your package and select

next. You will see ‘Create New Workflow’ Wizard. Enter the name of the workflow (file

extension .cwf), author name. Select additional attributes for the workflow from drop down list.

Attributes are described in the following table:

 N O V A W o r k F l o w 0 . 1

Download and install Sun JDK 1.5 from http://java.sun.com and Eclipse Galileo from

. Download NOVA Workflow plugin ca.stfx.logic.novawf.jar

http://logic.stfx.ca/novaworkflow and paste under eclipse/plugins directory.

Java Project. Create a library folder named ‘lib’ in your project.

http://logic.stfx.ca/novaworkflow and paste it into ‘lib’ directory. Add

Fig1.1: Directory Structure of Java Project

 (src) directory where you want to store your workflow models.

and select New -> Example. Select ‘New Workflow’

You will see ‘Create New Workflow’ Wizard. Enter the name of the workflow (file

extension .cwf), author name. Select additional attributes for the workflow from drop down list.

following table:

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

and Eclipse Galileo from

ca.stfx.logic.novawf.jar from

’ in your project.

’ directory. Add

Fig1.1: Directory Structure of Java Project

directory where you want to store your workflow models.

‘New Workflow’ wizard and click

You will see ‘Create New Workflow’ Wizard. Enter the name of the workflow (file

extension .cwf), author name. Select additional attributes for the workflow from drop down list.

10 | P a g e

Table1.1 Workflow attributes

Attribute Value Description

Root Net True During execution, a workflow with Root Net = True will start first. There can

be only one workflow with Root Net = True in your workflow package.

False A workflow w

by a composite task. During execution of a composite task, it is unfolded to

a subnet

True

Compensable

True A True compensable workflow can hold only compensable tasks. A

compensable task can on

workflow.

False A workflow with True Compensable = False can hold both compensable and

uncompensable task. An uncompensable task can only be decomposed to

this workflow.

What you will see

Click Finish to create your first workflow model. An empty workflow model will open in the

editor pane with an Input Condition

 N O V A W o r k F l o w 0 . 1

Description

During execution, a workflow with Root Net = True will start first. There can

be only one workflow with Root Net = True in your workflow package.

A workflow with Root Net = False is a subnet. A subnet can be decomposed

by a composite task. During execution of a composite task, it is unfolded to

a subnet

A True compensable workflow can hold only compensable tasks. A

compensable task can only be decomposed to a True compensable

workflow.

A workflow with True Compensable = False can hold both compensable and

uncompensable task. An uncompensable task can only be decomposed to

this workflow.

Fig1.2: Create New Workflow Wizard

to create your first workflow model. An empty workflow model will open in the

Input Condition and an Output Condition.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

During execution, a workflow with Root Net = True will start first. There can

be only one workflow with Root Net = True in your workflow package.

ith Root Net = False is a subnet. A subnet can be decomposed

by a composite task. During execution of a composite task, it is unfolded to

A True compensable workflow can hold only compensable tasks. A

ly be decomposed to a True compensable

A workflow with True Compensable = False can hold both compensable and

uncompensable task. An uncompensable task can only be decomposed to

Create New Workflow Wizard

to create your first workflow model. An empty workflow model will open in the

11 | P a g e

What you will see

Workflow Components View

To edit the workflow, open Workflow Components

found from Window->Show View

an outline of your workflow components.

Where you will find

 N O V A W o r k F l o w 0 . 1

Fig1.3: Workflow Editor

Workflow Components View. Workflow Components view can be

>Show View-> Other -> CWML. You can also use the Outline

an outline of your workflow components.

Fig1.4: Open Workflow Components View

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

View. Workflow Components view can be

Outline view to get

Open Workflow Components View

12 | P a g e

Fig1.5 shows the Workflow Components

workflow.

What you will see

 N O V A W o r k F l o w 0 . 1

Workflow Components View. Using the tools you can easily edit your

Fig1.5: Workflow Components View

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

sing the tools you can easily edit your

13 | P a g e

Chapter 2

USING THE EDITOR

NOVA Workflow comes with a graphical editor for workflow modeling

make using this editor will be a structured workflow. The workflow mode

format.

Insert an atomic task

To insert an atomic task in your workflow model use

tools are available in Workflow Components

Where you will find

The Pre-Selection tool will change the color of a

change the color of a node to Blue.

Selection, double click on Atomic Task

 N O V A W o r k F l o w 0 . 1

USING THE EDITOR

comes with a graphical editor for workflow modeling. The workflow you will

a structured workflow. The workflow model is stored in xml

your workflow model use Pre-Selection and Post-Selection

Workflow Components View.

Fig2.1: Pre-Selection and Post-Selection tool

tool will change the color of a node to Green and Post-Selection

change the color of a node to Blue. After selecting two nodes by Pre-Selection and

Atomic Task from the Task list of Workflow Components

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

. The workflow you will

l is stored in xml

Selection tools. The

Selection tool

Selection tool will

and Post-

Workflow Components.

14 | P a g e

What you will see

Insert a split-join block

To insert a split-join block use the

nodes where you want to insert your block, and then

Workflow Components.

What you will see

You can insert AND, XOR, OR, Parallel Composition, Internal Choice, Alternative Choice,

Speculative Choice block in the same way.

 N O V A W o r k F l o w 0 . 1

Fig2.2: Insert an Atomic Task

use the Pre-Selection and Post-Selection tool as before. Select two

nodes where you want to insert your block, and then double click on the split-join block from

Fig2.3: Insert a Split-Join block

You can insert AND, XOR, OR, Parallel Composition, Internal Choice, Alternative Choice,

Speculative Choice block in the same way.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

tool as before. Select two

join block from

You can insert AND, XOR, OR, Parallel Composition, Internal Choice, Alternative Choice,

15 | P a g e

You cannot insert an uncompensable

block. If you try to insert, you will get an

You cannot insert uncompensable task inside Compensable block”.

Increase number of branches of Split

You can insert a new branch to a split

To do this select the Split task of the block by

and double click on the task that you want to insert in a new branch from Workflow

Components View.

What you will see

Insert a Loop

To insert a loop around some tasks select two nodes using

Double click on Loop from Workflow Components list.

 N O V A W o r k F l o w 0 . 1

You cannot insert an uncompensable task or block inside a compensable

block. If you try to insert, you will get an Error message “Invalid Selection:

You cannot insert uncompensable task inside Compensable block”.

e number of branches of Split-Join block

to a split-join block with an atomic task or another split

To do this select the Split task of the block by Pre-Selection and the Join task by

on the task that you want to insert in a new branch from Workflow

Fig2.4: Insert atomic task in a new branch

loop around some tasks select two nodes using Pre-Selection and Post

from Workflow Components list.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

task or block inside a compensable

“Invalid Selection:

You cannot insert uncompensable task inside Compensable block”.

join block with an atomic task or another split-join block.

and the Join task by Post-Selection

on the task that you want to insert in a new branch from Workflow

Insert atomic task in a new branch

Post-Selection.

16 | P a g e

What you will see

To insert a loop around a single atomic task, select the atomic task twice

first by Pre-Selection

Add an Error Handler

An error handler (Backward/Forward) can

Compensable task by Pre-Selection

Components view.

What you will see

 N O V A W o r k F l o w 0 . 1

Fig2.5: Insert a Loop

To insert a loop around a single atomic task, select the atomic task twice

Selection tool and then again by Post-Selection

An error handler (Backward/Forward) can be added to a Compensable task. Select the

Selection tool and double click on the Error-Handler from Workflow

Fig2.6: Add an error handler

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

To insert a loop around a single atomic task, select the atomic task twice-

Selection tool.

. Select the

from Workflow

17 | P a g e

Add a Programmable Compensation

To add a Programmable Compensation

tool, and double click on Programmable Compensation

What you will see

Edit a task

To edit a task, select it and then click on the

Components View.

Where you will find

This will open a Task Property dialog where you can edit task name, description, aut

There is a check box for creating Property file; this will be described in the next Chapter.

 N O V A W o r k F l o w 0 . 1

Add a Programmable Compensation

Programmable Compensation to a Compensable task, select the task by

Programmable Compensation from Workflow Components.

Fig2.6: Add a Programmable Compensation

select it and then click on the Task Property Settings tool from Workflow

Fig2.7: Task Property Settings

This will open a Task Property dialog where you can edit task name, description, aut

There is a check box for creating Property file; this will be described in the next Chapter.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

the task by Pre-Selection

from Workflow Components.

Add a Programmable Compensation

tool from Workflow

Task Property Settings

This will open a Task Property dialog where you can edit task name, description, author name.

There is a check box for creating Property file; this will be described in the next Chapter.

18 | P a g e

What you will see

Delete a task

To delete a task or a split-join block, select the task by Pre

delete tool from Workflow Components View. If you select a split task and click this tool, this

will delete the whole block (split, join and all of its branches).

Where you will find

 N O V A W o r k F l o w 0 . 1

Fig2.8: Task Property Settings

join block, select the task by Pre-Selection tool, and then click on the

delete tool from Workflow Components View. If you select a split task and click this tool, this

will delete the whole block (split, join and all of its branches).

Fig2.9: Delete task tool

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

ction tool, and then click on the

delete tool from Workflow Components View. If you select a split task and click this tool, this

k tool

19 | P a g e

Make Composite Task

Select the task (Atomic or Compensable

Make Composite tool from Workflow Components view.

will open from where you can assign the subnet.

Where you will find

What you will see

If you select a

Subnet workflows with

 N O V A W o r k F l o w 0 . 1

Compensable) you want to make composite, and then click on the

tool from Workflow Components view. A Subnet workflow selection dialog

will open from where you can assign the subnet.

Fig2.10: Make Composite tool

Fig2.11: Subnet Workflow Selection Dialog

If you select a Compensable task to make it composite, you will only see

Subnet workflows with True Compensable = True.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

) you want to make composite, and then click on the

workflow selection dialog

Make Composite tool

Subnet Workflow Selection Dialog

composite, you will only see

20 | P a g e

Chapter 3

USING THE TRANSLATOR FOR

FORMAL VERIFICATION

NOVA WorkFlow incorporates a translator which translates the workflow model to a

the input language for a model checker.

DiVinE model checker. One important feature of our translator is that it translates data fields in

the model and provides data-abstraction capabilitie

Supported Data types

For application development you can use any java data type. You

Aggregate Class also. But for the verification you can only take byte, integer, long and boolean,

although these data types can be specified inside a Class/List/Vector/Aggregate Class.

Float and Double are not supported as they are not supported by the model checker. NOVA

WorkFlow encourages you to make your entities object oriented.

All the entities/properties of your application

verification. For example

that guides the flow, so you can simply ignore this property

verification.

Fig3.1 shows one simple entity bean that you can use in NOVA WorkFlow. If you are using

Hibernate for your application development you

 N O V A W o r k F l o w 0 . 1

USING THE TRANSLATOR FOR

FORMAL VERIFICATION

low incorporates a translator which translates the workflow model to a

for a model checker. Current version translates the workflow model to

One important feature of our translator is that it translates data fields in

abstraction capabilities for complex data types.

you can use any java data type. You can use Class, List, Vector,

But for the verification you can only take byte, integer, long and boolean,

although these data types can be specified inside a Class/List/Vector/Aggregate Class.

orted as they are not supported by the model checker. NOVA

you to make your entities object oriented.

All the entities/properties of your application might not be

verification. For example Patient’s name is not an interesting property

that guides the flow, so you can simply ignore this property

.

Fig3.1 shows one simple entity bean that you can use in NOVA WorkFlow. If you are using

Hibernate for your application development your entities will be a POJO (Plain Old Java Object).

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

USING THE TRANSLATOR FOR

low incorporates a translator which translates the workflow model to a model in

translates the workflow model to

One important feature of our translator is that it translates data fields in

, List, Vector, and

But for the verification you can only take byte, integer, long and boolean,

although these data types can be specified inside a Class/List/Vector/Aggregate Class. String,

orted as they are not supported by the model checker. NOVA

be important for

eresting property

that guides the flow, so you can simply ignore this property for

Fig3.1 shows one simple entity bean that you can use in NOVA WorkFlow. If you are using

OJO (Plain Old Java Object).

21 | P a g e

Example

NOVA WorkFlow provides a base class named

entity beans and some abstract classes for Data Access Objects. There is

no restriction

Create Task Property File

When you have all your data-types defined as entity beans, you

files. In this property file, you can write statements that will be translated to the input language

of model checker. To create a task property file, select a task and click on

Settings tool from workflow components (

and click Finish. A Java class with the task name will be created unde

the workflow name. Depending on the type of the task

extend different abstract classes.

implement. Fig3.2 shows an example property f

 N O V A W o r k F l o w 0 . 1

Fig3.1: Entity Bean

NOVA WorkFlow provides a base class named PersistantCapableDTO

entity beans and some abstract classes for Data Access Objects. There is

no restriction to use PersistantCapableDTO, and you can ignore them.

types defined as entity beans, you need to create task property

you can write statements that will be translated to the input language

To create a task property file, select a task and click on Task Property

tool from workflow components (see Fig2.7). Select the checkbox Create Property File

with the task name will be created under a package named with

the workflow name. Depending on the type of the task you selected, the generated

extend different abstract classes. The abstract class has some abstract method that you have to

Fig3.2 shows an example property file of an atomic task.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

PersistantCapableDTO for

entity beans and some abstract classes for Data Access Objects. There is

you can ignore them.

to create task property

you can write statements that will be translated to the input language

Task Property

Create Property File

r a package named with

generated class will

The abstract class has some abstract method that you have to

22 | P a g e

Fig3.2: Task property file of an atomic task

Table3.1: Tasks, their abstract classes and interfaces

Task Type Abstract Class and Interfaces

Atomic Task UncompensableTaskMCImpl

AndSplitTask AndSplitMCImpl

AndJoinTask AndJoinMCImpl

XorSplitTask XorSplitMCImpl

IMCBranchOrder

XorJoinTask XorJoinMCImpl

OrSplitTask ORSplitMCImpl, IMCBranchCondition

OrJoinTask ORJoinMCImpl

LoopSplitTask LoopSplitMCImpl, IMCBranchCondition,

IMCBranchOrder

LoopJoinTask LoopJoinMCImpl

CompensableTask CompensableTaskMCImpl

 N O V A W o r k F l o w 0 . 1

Fig3.2: Task property file of an atomic task

their abstract classes and interfaces for model checking implementation.

Abstract Class and Interfaces Abstract Methods

UncompensableTaskMCImpl initialize(), action(), finalize()

AndSplitMCImpl initialize(), action(), finalize()

AndJoinMCImpl initialize(), action(), finalize()

XorSplitMCImpl, IMCBranchCondition,

IMCBranchOrder

initialize(), action(), finaliz

branchCondition(), getBranchOrder

XorJoinMCImpl initialize(), action(), finalize()

ORSplitMCImpl, IMCBranchCondition initialize(), action(), finalize(),

branchCondition()

ORJoinMCImpl initialize(), action(), fin

LoopSplitMCImpl, IMCBranchCondition,

IMCBranchOrder

initialize(), action(), finalize(),

branchCondition(), getBranchOrder

LoopJoinMCImpl initialize(), action(), finalize()

CompensableTaskMCImpl initialize(), action(), finalize(),

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

for model checking implementation.

Abstract Methods

(), action(), finalize()

(), action(), finalize()

(), action(), finalize()

(), action(), finalize(),

getBranchOrder()

(), action(), finalize()

(), action(), finalize(),

(), action(), finalize()

(), action(), finalize(),

getBranchOrder()

(), action(), finalize()

(), action(), finalize(),

23 | P a g e

ParallelSplitTask ParallelSplitMCImpl

ParallelJoinTask ParallelJoinMCImpl

InternalChoieSplitTask InternalChoiceSplitMCImpl,

IMCBranchCondition

InternalChoiceJoinTask InternalChoiceJoinMCImpl

SpeculativeSplitTask SpeculativeChoiceSplitMCImpl

SpeculativeJoinTask SpeculativeChoiceJoinMCImpl

AlternativeSplitTask AlternativeSplitMCImpl, IMCBranchOrder

AlternativeJoinTask AlternativeJoinMCImpl

BackwardHandlerTask BackwardHandlerMCImpl

ForwardHandlerTask ForwardHandlerMCImpl

Programmable

Compensation Task

ProgrammableCompensationMCImpl

 N O V A W o r k F l o w 0 . 1

abortInitialize(), abort(), abortFinalize()

ParallelSplitMCImpl initialize(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

ParallelJoinMCImpl initialize(), action(), fi

abortInitialize(), abort(), abortFinalize()

InternalChoiceSplitMCImpl,

IMCBranchCondition

initialize(), action(), finalize(),

abortInitialize(), abort(), abortFinalize(),

branchCondition()

hoiceJoinMCImpl initialize(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

SpeculativeChoiceSplitMCImpl initialize(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

iveChoiceJoinMCImpl initialize(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

AlternativeSplitMCImpl, IMCBranchOrder initialize(), action(), finalize(),

abortInitialize(), abort(), abortFinalize(),

getBranchOrder()

AlternativeJoinMCImpl initialize(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

BackwardHandlerMCImpl initialize(), action(), finalize()

ForwardHandlerMCImpl initialize(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

ProgrammableCompensationMCImpl initialize(), action(), finalize()

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

abortInitialize(), abort(), abortFinalize()

(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

(), action(), finalize(),

abortInitialize(), abort(), abortFinalize(),

(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

(), action(), finalize(),

abortInitialize(), abort(), abortFinalize(),

(), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

(), action(), finalize()

), action(), finalize(),

abortInitialize(), abort(), abortFinalize()

(), action(), finalize()

24 | P a g e

More about task property file

Variable Declaration

There are two types of variables

i) Global Variables

ii) Local Variables

If you want to use an entity bean in a task property file

as class attribute; this variable will be translated to DiVinE as global variable. If you

a local variable, you need to declare it

data type.

Entity beans will be translated as Global Variable.

variables declared as primitive data type will be transl

Variable in a DiVinE process.

Example

Fig3.3 shows an example. In this example

and in any other task property file

the other hand age is declared as primitive data type, it will be translated

DiVinE process.

 N O V A W o r k F l o w 0 . 1

More about task property file

There are two types of variables in DiVinE in terms of visibility.

If you want to use an entity bean in a task property file, you have to declare a variable for that

will be translated to DiVinE as global variable. If you

a local variable, you need to declare it in the task property class as class attribute with

Entity beans will be translated as Global Variable. On the other hand

ariables declared as primitive data type will be translated as Local

Variable in a DiVinE process.

Fig3.3: Variable declaration in task property file

Fig3.3 shows an example. In this example referralA will be declared as global variable

task property file, if you use the same name they will refer to this variable. On

eclared as primitive data type, it will be translated to a local variable

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

you have to declare a variable for that

will be translated to DiVinE as global variable. If you want to use

in the task property class as class attribute with primitive

On the other hand

ated as Local

Variable declaration in task property file

will be declared as global variable in DiVinE

he same name they will refer to this variable. On

to a local variable of

25 | P a g e

NOVA Workflow translator will not translate the whole entity bean; it will

read the sta

properties of entity bean that is used. For example if patient’s Name is

not used in the property file, it will not be translated to DiVinE.

Table3.2: Different statements of java data access an

Java Data Access

referralA.setAge(30);

/*age is an attribute of class ReferralInfoDTO, and

referralA is a variable of type ReferralInfoDTO */

referralA.getAddress().setRoadNumber(55);

/* address is a class attribute of ReferralInfoDTO. The

data type of address is Address class. roadNumber is a

property of Address class */

referralA.getContacts(1).getAddress().get

/* The data type of contacts is List, and this is a property

of class ReferralInfoDTO */

Data abstraction

NOVA Workflow ships with a Util

this method whenever you need to menti

The signature of the method is given below:

public static Object getNonDeterministicData(Object[] values)

 N O V A W o r k F l o w 0 . 1

NOVA Workflow translator will not translate the whole entity bean; it will

read the statements of the property files and will translate only those

properties of entity bean that is used. For example if patient’s Name is

not used in the property file, it will not be translated to DiVinE.

ifferent statements of java data access and corresponding DiVinE variables.

 DiVinE variable

/*age is an attribute of class ReferralInfoDTO, and

referralA is a variable of type ReferralInfoDTO */

Int referralA_age;

referralA.getAddress().setRoadNumber(55);

* address is a class attribute of ReferralInfoDTO. The

data type of address is Address class. roadNumber is a

int referralA_address_roadNumber;

Address().getLocation();

is List, and this is a property

int referralA_contacts_Element_1_

Util class which has a method getNonDeterministicData()

this method whenever you need to mention some non-deterministic values for any variable.

The signature of the method is given below:

Object getNonDeterministicData(Object[] values)

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

NOVA Workflow translator will not translate the whole entity bean; it will

tements of the property files and will translate only those

properties of entity bean that is used. For example if patient’s Name is

not used in the property file, it will not be translated to DiVinE.

responding DiVinE variables.

DiVinE variable

int referralA_address_roadNumber;

int referralA_contacts_Element_1_address_location;

getNonDeterministicData(). Use

deterministic values for any variable.

26 | P a g e

Example

Fig3.4: Syntax for assigning non

For an integer the value range i

allow having each value, there will be a huge state explosion which will make

impossible to check a model. Using sample values for each of the class will solve

this problem.

Syntax

Limited number of Java syntax is allowed

the input language of a model checker, not all java syntax is supported. Below is a list of syntax

allowed for different methods.

Method Name Allowed Syntax

initialize(),

abortInitialize()

localVar = (Integer)Util.getNonDeterministicData(new Integer[]{1,2,..});

localVar = (Long)Util.getNonDeterministicData(new Long[]{1,2,..});

localVar = (Byte)Util.getNonDeterministicData(new byte[]{1,2,..});

localVar = (Boolean)Util.getNonDeterministi

localVar = globalVar.getAttribute();

localVar = globalVar.getAggregateProperty().getAttribute();

localVar = globalVar.get

localVar = globalVar.getListAttribute().get(index).getAttribute();

 N O V A W o r k F l o w 0 . 1

Fig3.4: Syntax for assigning non-deterministic data

For an integer the value range is -32768 to +32767. For model checking if we

allow having each value, there will be a huge state explosion which will make

impossible to check a model. Using sample values for each of the class will solve

this problem.

ax is allowed in task property file. As this file will be translated to

the input language of a model checker, not all java syntax is supported. Below is a list of syntax

Allowed Syntax

localVar = (Integer)Util.getNonDeterministicData(new Integer[]{1,2,..});

localVar = (Long)Util.getNonDeterministicData(new Long[]{1,2,..});

localVar = (Byte)Util.getNonDeterministicData(new byte[]{1,2,..});

localVar = (Boolean)Util.getNonDeterministicData(new Booelan[]{true,false});

localVar = globalVar.getAttribute();

localVar = globalVar.getAggregateProperty().getAttribute();

localVar = globalVar.getListAttribute().get(index);

localVar = globalVar.getListAttribute().get(index).getAttribute();

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

deterministic data

32768 to +32767. For model checking if we

allow having each value, there will be a huge state explosion which will make

impossible to check a model. Using sample values for each of the class will solve

task property file. As this file will be translated to

the input language of a model checker, not all java syntax is supported. Below is a list of syntax

localVar = (Integer)Util.getNonDeterministicData(new Integer[]{1,2,..});

cData(new Booelan[]{true,false});

27 | P a g e

action(), abort() Assignment statements using local variables and numbers. Assignment statements can

contain:

� Numbers, true, false

� Parenthesis: (,)

� Variable identifiers

� Unary operators ()

� Binary operators (|, ^, &, ==, !=, <, <=, >, >=, >>, <<,

finalize(),

abortFinalize()

globalVar.setAttribute(localVar);

globalVar.getAggregateProperty().setAttribute(localVar);

globalVar.getListAttribute().set(index, localVar);

globalVar.getListAttribute().get(index).setAttribute(localVar);

branchCondition

(int branchNumber)

if(branchNumber == 1)

 return Boolean_Expression

else if(branchNumber == 2)

 return Boolean_Expression

else

 return Boolean_Expression

Boolean expressions can be written using local variables and numbers. The statements

can contain:

� Numbers, true, false

� Parenthesis: (,)

� Variable identifiers

� Unary operators ()

� Binary operators (|, ^, &, ==, !=, <, <=, >, >=, >>, <<,

getBranchOrder

(int branchNumber)

if(branchNumber == 1)

 return 2;

else if(branchNumb

 return 1;

 N O V A W o r k F l o w 0 . 1

Assignment statements using local variables and numbers. Assignment statements can

Numbers, true, false

Parenthesis: (,)

Variable identifiers

Unary operators ()

Binary operators (|, ^, &, ==, !=, <, <=, >, >=, >>, <<, -, +, /, *, %)

globalVar.setAttribute(localVar);

globalVar.getAggregateProperty().setAttribute(localVar);

globalVar.getListAttribute().set(index, localVar);

globalVar.getListAttribute().get(index).setAttribute(localVar);

f(branchNumber == 1)

return Boolean_Expression;

else if(branchNumber == 2)

return Boolean_Expression;

return Boolean_Expression;

Boolean expressions can be written using local variables and numbers. The statements

Numbers, true, false

Parenthesis: (,)

Variable identifiers

Unary operators ()

Binary operators (|, ^, &, ==, !=, <, <=, >, >=, >>, <<, -, +, /, *, %)

if(branchNumber == 1)

else if(branchNumber == 2)

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

Assignment statements using local variables and numbers. Assignment statements can

, +, /, *, %)

Boolean expressions can be written using local variables and numbers. The statements

, +, /, *, %)

28 | P a g e

else

 return 3;

Translation Principle

NOVA WorkFlow translator will translate each of the task by reading the workflow model and

its properties file. If a task does not have any property file, only its flow will be translate

DiVinE. Each task will be translated to a DiVinE process.

will be translated first in the process transition, then

conditions specified in the branchCondition()

condition of a transition) of DiVinE process transition.

correctly translate the order of execution of the branches.

Review Branch Order and Condition

To review the branch condition mentioned in the task property file

Task Property Settings (see Fig2.7)

 N O V A W o r k F l o w 0 . 1

NOVA WorkFlow translator will translate each of the task by reading the workflow model and

. If a task does not have any property file, only its flow will be translate

DiVinE. Each task will be translated to a DiVinE process. In the translation, initialize()

first in the process transition, then action() and at last finalize()

branchCondition() will be translated as guard statement (pre

condition of a transition) of DiVinE process transition. getBranchOrder() method will be used to

correctly translate the order of execution of the branches.

Review Branch Order and Condition

tion mentioned in the task property file, select the task, and open

2.7). Click Next to view the dialog.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

NOVA WorkFlow translator will translate each of the task by reading the workflow model and

. If a task does not have any property file, only its flow will be translated to

initialize() method

finalize() method. The

e translated as guard statement (pre-

method will be used to

select the task, and open

29 | P a g e

What you will see

Only the task that implement

IMCBranchOrder

Table3.1 for details.

Translate the model

After writing all necessary task property files for your workflow click on

from Workflow Components view.

your workflow package. Use this file to verify your properties in DiVinE.

 N O V A W o r k F l o w 0 . 1

Fig3.5: Review branch condition and order

Only the task that implement either IMCBranchCondition

IMCBranchOrder interface or both will have this dialog to review. See

Table3.1 for details.

After writing all necessary task property files for your workflow click on Translate to DiVinE

from Workflow Components view. A file named translate.dve will be generated and stored in

your workflow package. Use this file to verify your properties in DiVinE.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

Review branch condition and order

n or

will have this dialog to review. See

Translate to DiVinE tool

will be generated and stored in

30 | P a g e

Where you will find

If you don’t see any code in the

have a Workflow present with

will start the translation from Root net.

How to do the Reduction

NOVA WorkFlow translator ships with a reduction algorithm which can read LTL (Linear

Temporal Logic) property and reduce the workflow model before

this reduction write your property file and name it

package. Now if you run the translation tool, the translation will be done after applying the

reduction algorithm.

Syntax for Writing LTL property File

NOVA WorkFlow translator will read the

mention any task state as a property. To do this use the following syntax:

_WorkflowName_TaskName_State

State can be either Successful, or Abort, or Failed. To mention about the task state use SUC,

ABT, FAIL for Successful, Abort and Failed accordingly.

 N O V A W o r k F l o w 0 . 1

Fig3.6: Translate to DiVinE tool

If you don’t see any code in the translate.dve file double check that

have a Workflow present with Root Net = True. NOVA WorkFlow translator

will start the translation from Root net.

NOVA WorkFlow translator ships with a reduction algorithm which can read LTL (Linear

d reduce the workflow model before doing the translation.

this reduction write your property file and name it ltl.property, store it in your workflow

package. Now if you run the translation tool, the translation will be done after applying the

for Writing LTL property File

NOVA WorkFlow translator will read the #define statements of your LTL property file.

mention any task state as a property. To do this use the following syntax:

_WorkflowName_TaskName_State

an be either Successful, or Abort, or Failed. To mention about the task state use SUC,

ABT, FAIL for Successful, Abort and Failed accordingly.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

Translate to DiVinE tool

file double check that you

. NOVA WorkFlow translator

NOVA WorkFlow translator ships with a reduction algorithm which can read LTL (Linear

translation. To do

, store it in your workflow

package. Now if you run the translation tool, the translation will be done after applying the

statements of your LTL property file. If can

an be either Successful, or Abort, or Failed. To mention about the task state use SUC,

31 | P a g e

When you mention task state as a property in your LTL property file, be

careful about the

before the workflow name.

Example

#define patient_appropriate (referralA_admissionDecision == 1)

#define registration_done (_Overall_Registration_SUC > 0)

#property

 N O V A W o r k F l o w 0 . 1

When you mention task state as a property in your LTL property file, be

careful about the underscore characters. There is a leading underscore

before the workflow name.

#define patient_appropriate (referralA_admissionDecision == 1)

#define registration_done (_Overall_Registration_SUC > 0)

#property write some property here

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

When you mention task state as a property in your LTL property file, be

leading underscore

#define patient_appropriate (referralA_admissionDecision == 1)

#define registration_done (_Overall_Registration_SUC > 0)

32 | P a g e

Chapter 4

using the workflow engine

NOVA WorkFlow engine is a flexible workflow

framework. You can use the engine simply as a library. You can also get a custom made

workflow management system by creating a client UI communicating with the engine, which

can run with any web application server.

Configure your project

You have to include spring and hibernate jar files

can safely jump to the next section.

build path. Download required jar files from

http://www.hibernate.org/downloads.html

Required jars

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 N O V A W o r k F l o w 0 . 1

using the workflow engine

orkFlow engine is a flexible workflow engine developed in the Spring & Hibernate

framework. You can use the engine simply as a library. You can also get a custom made

ow management system by creating a client UI communicating with the engine, which

ation server.

You have to include spring and hibernate jar files to the project. If you are a J2EE expert, you

section. Below is a list of jar files you have to add in your project

build path. Download required jar files from http://www.springsource.org/download

http://www.hibernate.org/downloads.html

 activation.jar

 antlr-2.7.6.jar

 aopalliance.jar

 cglib-nodep-2.1.jar

 commons-collections-3.1.jar

 commons-discovery-0.2.jar

 commons-logging-1.0.4.jar

 dom4j-1.6.1.jar

 hibernate2.jar

 javassist-3.9.0.GA.jar

 jaxrpc.jar

 jstl.jar

 jta-1.1.jar

 jta.jar

 log4j-1.2.9.jar

 mysql-connector-java-3.0.15-ga-bin.jar

 saaj.jar

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

using the workflow engine

developed in the Spring & Hibernate

framework. You can use the engine simply as a library. You can also get a custom made

ow management system by creating a client UI communicating with the engine, which

to the project. If you are a J2EE expert, you

Below is a list of jar files you have to add in your project

gsource.org/download and

33 | P a g e

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

To add the jar files in your build path, paste them into your

eclipse editor, right click on them and select

Generate service classes

Click on Create Service Class tool from your Workflow Components v

Where you will find

 N O V A W o r k F l o w 0 . 1

 slf4j-api-1.5.8.jar

 spring-aop.jar

 spring-beans.dtd

 spring-beans.jar

 spring-context.jar

 spring-core.jar

 spring-dao.jar

 spring-hibernate.jar

 spring-jdbc.jar

 spring-mock.jar

 spring-orm.jar

 spring-remoting.jar

 spring-support.jar

 spring-web.jar

 spring-webmvc.jar

 spring.jar

 spring.vm

 standard.jar

 wsdl4j-1.5.1.jar

iles in your build path, paste them into your ‘lib’ directory. Select the jars

right click on them and select Build Path -> Add to Build Path.

tool from your Workflow Components view.

Fig4.1: Tool for generating Service Class

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

directory. Select the jars from

Tool for generating Service Class

34 | P a g e

For each of the task of your workflow a service class will

mapping files; an applicationContext.xml file will be generated that is required for the

execution of workflow engine. A clientApplicationContext.xml w

use for your client application development. Most of the Service classes have default

implementation; some service classes

application developer (i.e., getBranchCondition()

What you will see

Every Service class extends abstractTask

classes will implement some Interfaces.

Table4.1 Task types and their Implemented Interfaces

Task Type

Atomic Task ActionInterface

 N O V A W o r k F l o w 0 . 1

or each of the task of your workflow a service class will be generated. Some hibernate

an applicationContext.xml file will be generated that is required for the

workflow engine. A clientApplicationContext.xml will be generated that you can

use for your client application development. Most of the Service classes have default

implementation; some service classes will need one or two methods to be implemented by

getBranchCondition(), isManual()).

Fig4.2: An Example scenario

abstractTask and depending on the type of task, generated service

Interfaces.

Implemented Interfaces

Interfaces Abstract Methods

ActionInterface action()

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

Some hibernate

an applicationContext.xml file will be generated that is required for the

ill be generated that you can

use for your client application development. Most of the Service classes have default

need one or two methods to be implemented by the

generated service

Abstract Methods

35 | P a g e

AndSplitTask ActionInterface

AndJoinTask ActionInterface

XorSplitTask ActionInterface, IBranchCondition

XorJoinTask ActionInterface

OrSplitTask ActionInterface, IBranchCondition

OrJoinTask ActionInterface

LoopSplitTask ActionInterface, IBranchCondition

LoopJoinTask ActionInterface

CompensableTask ActionInterface, AbortInterface, FailInterface

ParallelSplitTask ActionInterface, AbortInterface, FailInterface

ParallelJoinTask ActionInterface, AbortInterface, FailInterface

InternalChoieSplitTask ActionInterface, AbortInterface,

FailInterface, IBranchCondition

InternalChoiceJoinTask ActionInterface, AbortInterface,

SpeculativeSplitTask ActionInterface, AbortInterface, FailInterface

SpeculativeJoinTask ActionInterface, AbortInterface, FailInterface

AlternativeSplitTask ActionInterface, AbortInterface, FailInterface

AlternativeJoinTask ActionInterface, AbortInterface, FailInterface

BackwardHandlerTask ActionInterface, AbortInterface, FailInterface

ForwardHandlerTask ActionInterface, AbortInterface, FailInterface

Programmable

Compensation Task

ActionInterface, AbortInterface, FailInterface

 N O V A W o r k F l o w 0 . 1

ActionInterface action()

ActionInterface action()

ActionInterface, IBranchCondition action(), getBranchCondition()

ActionInterface action()

ActionInterface, IBranchCondition action(), getBranchCondition()

ActionInterface action()

ActionInterface, IBranchCondition action(), getBranchCondit

ActionInterface action()

ActionInterface, AbortInterface, FailInterface action(), abort(), fail()

ActionInterface, AbortInterface, FailInterface action(), abort(), fail()

face, AbortInterface, FailInterface action(), abort(), fail()

ActionInterface, AbortInterface,

FailInterface, IBranchCondition

action(), abort(), fail()

getBranchCondition()

ActionInterface, AbortInterface, FailInterface action(), abort(), fail()

ActionInterface, AbortInterface, FailInterface action(), abort(), fail()

ActionInterface, AbortInterface, FailInterface action(), abort(), fail()

nInterface, AbortInterface, FailInterface action(), abort(), fail()

ActionInterface, AbortInterface, FailInterface action(), abort(), fail()

ActionInterface, AbortInterface, FailInterface Initialize(), action(), finalize()

ActionInterface, AbortInterface, FailInterface action(), abort(), fail()

ActionInterface, AbortInterface, FailInterface action(), abort(), fail()

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

tion(), getBranchCondition()

action(), getBranchCondition()

action(), getBranchCondition()

action(), abort(), fail()

action(), abort(), fail()

action(), abort(), fail()

action(), abort(), fail(),

()

action(), abort(), fail()

action(), abort(), fail()

action(), abort(), fail()

action(), abort(), fail()

action(), abort(), fail()

nalize()

action(), abort(), fail()

action(), abort(), fail()

36 | P a g e

How to work with the service classes

There are two ways to work with the workflow service classes.

i) Extend service classes

ii) Invoke services from outside

Option (i) is suitable for you if you want to use

option (ii) is suitable for you if you just don’t want t

Extend service classes

Extend a service class (generated by NOVA Work

after completing your actual work, invoke

work is accomplished. NOVA WorkFlow engine will update the task status.

invoking super.action() method you have to supply the

instanceId see Workflow Engine Service

You have to change the service

Configure your bean

applicationContext.xml file

your bean references for your service bean

Example

Fig4.3: An exam

 N O V A W o r k F l o w 0 . 1

How to work with the service classes

two ways to work with the workflow service classes.

Extend service classes

from outside

Option (i) is suitable for you if you want to use spring for your application development and

option (ii) is suitable for you if you just don’t want to use spring for application development.

(generated by NOVA WorkFlow) and implement your business logic. Just

after completing your actual work, invoke super.action() method to inform the engine that the

is accomplished. NOVA WorkFlow engine will update the task status. When you are

method you have to supply the instanceId as parameter.

Workflow Engine Service section.

You have to change the service bean tag in applicationContext.xml.

onfigure your bean by replacing the Service Class name in the

applicationContext.xml file. You need to replace the class name and add

your bean references for your service bean (see Fig4.4).

Fig4.3: An example of Service class extension

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

for your application development and

for application development.

and implement your business logic. Just

method to inform the engine that the

When you are

as parameter. To know about

n tag in applicationContext.xml.

name in the

replace the class name and add

37 | P a g e

Fig4.4 Service Bean tag of applicationContext.xml

Invoke services from outside

To invoke a NOVA WorkFlow service bean from outside expose the bean interfaces by

RMI/HttpInvoker/WebService. A

or abort() or fail() method from outside through the interface. NOVA WorkFlow engine will

update the task accordingly.

Configure a service for Automatic or Manual

It is possible to configure a NOVA WorkFlow servi

is configured for automatic execution, the engine will invoke the

instead of waiting for its action()

hand if a service is configured for

its action() method. A method isManual()

implementation of isManual() method returns false (means automatic execution). You can

override this method and configure it for manual execution.

Example

 N O V A W o r k F l o w 0 . 1

Fig4.4 Service Bean tag of applicationContext.xml

Invoke services from outside

To invoke a NOVA WorkFlow service bean from outside expose the bean interfaces by

After completing the actual work of a task, invoke the

method from outside through the interface. NOVA WorkFlow engine will

Automatic or Manual execution

It is possible to configure a NOVA WorkFlow service for automatic/manual execution. If a task

is configured for automatic execution, the engine will invoke the action() method automatically

action() method to be invoked from the application. On the other

nfigured for manual execution, the engine will wait for the invocation of

isManual() is declared in abstractTask class and the default

method returns false (means automatic execution). You can

ride this method and configure it for manual execution.

Fig4.5: Configure service for manual execution

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

To invoke a NOVA WorkFlow service bean from outside expose the bean interfaces by

invoke the action()

method from outside through the interface. NOVA WorkFlow engine will

execution. If a task

method automatically

method to be invoked from the application. On the other

, the engine will wait for the invocation of

class and the default

method returns false (means automatic execution). You can

Fig4.5: Configure service for manual execution

38 | P a g e

The automatic/manual configuration for service execution is same

for action(), abort() and fail()

How to implement IBranchCondition Interface

NOVA WorkFlow engine needs to know about the branch Condition of some split tasks (see

Table4.1). It does not provide any default implementation as it is totally depends on the

application. The interface has only one method

Fig4.6: IBranchCondition Interface

You can write any java statement in the method while implementing. Typically you will need to

do some database searching or invoking some service to know about the conditions. The

workflow engine will invoke this method with

branch to execute.

Example

Fig4.7: Example of getBranchCondition() implementation

NOVA WorkFlow Engine will get the branch orders from the task

properties file that y

Branch Order and Condition’ section in previous chapter.

 N O V A W o r k F l o w 0 . 1

The automatic/manual configuration for service execution is same

action(), abort() and fail() methods.

ment IBranchCondition Interface

NOVA WorkFlow engine needs to know about the branch Condition of some split tasks (see

Table4.1). It does not provide any default implementation as it is totally depends on the

application. The interface has only one method and the signature is given below:

Fig4.6: IBranchCondition Interface

You can write any java statement in the method while implementing. Typically you will need to

do some database searching or invoking some service to know about the conditions. The

flow engine will invoke this method with instanceId and branchNumber to know which

Fig4.7: Example of getBranchCondition() implementation

NOVA WorkFlow Engine will get the branch orders from the task

properties file that you configured for property verification. See ‘Review

Branch Order and Condition’ section in previous chapter.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

The automatic/manual configuration for service execution is same

NOVA WorkFlow engine needs to know about the branch Condition of some split tasks (see

Table4.1). It does not provide any default implementation as it is totally depends on the

and the signature is given below:

You can write any java statement in the method while implementing. Typically you will need to

do some database searching or invoking some service to know about the conditions. The

to know which

Fig4.7: Example of getBranchCondition() implementation

NOVA WorkFlow Engine will get the branch orders from the task

verification. See ‘Review

39 | P a g e

WorkFlow Engine Service

NOVA WorkFlow engine provides an interface

application can be easily build with wor

public interface IWorkflowEngineService {

 public WfInstance createNewWorkflowInstance(WfInstance newInstance);

 public WfInstance getInstance(

 public List<WfInstance> getAllActiveInstances

 public List<InstanceInfo> getAvailableMethods(WfInstance theInstance);

 public List<InstanceInfo> getAvailableMethods(Long instanceId, String taskId);

}

Table4.2 Description of the methods of IWorkflowEngineService

Method Name Functionality

createNewWorkflowInstance To create a new workflow instance use this method. This method inserts a new

record in table

getInstance To know details about an instance this method can be used.

getAllActiveInstances This method returns all Active instances

getAvailableMethods There are two overload methods:

Attributes of class InstanceInfo is shown here:

 private Long id;

 private Long instanceId

 private String taskId;

 private String workflowName

 private String varName;

 private Integer value;

 private String availableMethod

 private String actor;

 N O V A W o r k F l o w 0 . 1

WorkFlow Engine Service

NOVA WorkFlow engine provides an interface IWorkFlowEngineService using which an

application can be easily build with workflow support. The methods are described in Table 4.2

IWorkflowEngineService {

WfInstance createNewWorkflowInstance(WfInstance newInstance);

WfInstance getInstance(long id);

List<WfInstance> getAllActiveInstances();

List<InstanceInfo> getAvailableMethods(WfInstance theInstance);

List<InstanceInfo> getAvailableMethods(Long instanceId, String taskId);

Table4.2 Description of the methods of IWorkflowEngineService

Functionality

To create a new workflow instance use this method. This method inserts a new

record in table WfInstance and generates a unique id for the newly created instance.

To know details about an instance this method can be used.

This method returns all Active instances

There are two overload methods:

i) Takes a workflow instance and returns all InstanceInfo

available methods of the tasks

ii) Takes an instanceId and taskId as parameter and returns all available

methods for the task

is shown here:

instanceId;

workflowName;

;

availableMethod;

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

using which an

described in Table 4.2

WfInstance createNewWorkflowInstance(WfInstance newInstance);

List<InstanceInfo> getAvailableMethods(WfInstance theInstance);

List<InstanceInfo> getAvailableMethods(Long instanceId, String taskId);

To create a new workflow instance use this method. This method inserts a new

and generates a unique id for the newly created instance.

 containing taskId and

as parameter and returns all available

40 | P a g e

Table4.3 shows all possible values of

available operation by these constants:

Table4.3 Possible values of availableMethod

Value Meaning

ACTION Task is active for execution

ABORT Task is enable for abort operation

FAIL Task need to perform fail operation

CMP_ACTION The composite task is active for execution

CMP_ABORT The subnet tasks aborted, the composite task needs to perf

How to get the WorkFlow Engine Service

The workflow engine is deployed in applicationContext.xml as a service. You can expose the

interface using RMI/HttpInvoker/WebService or any other methods. An example of exposing

the service using RMI is shown here:

Fig4.8: Exposing WorkFlow Engine Service using RMI

 N O V A W o r k F l o w 0 . 1

Table4.3 shows all possible values of availableMethod. Your application will determine the

available operation by these constants:

Table4.3 Possible values of availableMethod and their meaning

Meaning

Task is active for execution

Task is enable for abort operation

Task need to perform fail operation

The composite task is active for execution

The subnet tasks aborted, the composite task needs to perform abort operation

How to get the WorkFlow Engine Service

The workflow engine is deployed in applicationContext.xml as a service. You can expose the

interface using RMI/HttpInvoker/WebService or any other methods. An example of exposing

g RMI is shown here:

Exposing WorkFlow Engine Service using RMI

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

. Your application will determine the

orm abort operation

The workflow engine is deployed in applicationContext.xml as a service. You can expose the

interface using RMI/HttpInvoker/WebService or any other methods. An example of exposing

41 | P a g e

How to Deploy

Deploy the service classes, entity beans, hibernate mapping files and application context in your

application server or web container

application and additionally cwf.jar

The default applicationContext.xml that is generated by NOVA WorkFlow

Service class generation tool includes default database information. You

have to edit the information to configur

 N O V A W o r k F l o w 0 . 1

Deploy the service classes, entity beans, hibernate mapping files and application context in your

or web container. You have to include spring, hibernate jar files in the web

cwf.jar file.

The default applicationContext.xml that is generated by NOVA WorkFlow

Service class generation tool includes default database information. You

have to edit the information to configure your database.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

Deploy the service classes, entity beans, hibernate mapping files and application context in your

nate jar files in the web

The default applicationContext.xml that is generated by NOVA WorkFlow

Service class generation tool includes default database information. You

42 | P a g e

Chapter 5

demo

A demo application is available in CLI website which shows the functionalities of NOVA

WorkFlow. You can download it from

contains two projects- i) Server side application including workflows, ii) client side application

which is an eclipse RCP application. The webapp directory contains all required files that you

will need to deploy in your web container. One could use other technologies like

JSP/Struts/JSF/Others for the client side application.

Use Case Scenario

PC_Demo application is a small workflow of healthcare system. A patient is referred by

community care to palliative care program, where s/h

registered to the program. Once registered a team consisting of formal and informal caregiver

is built for the patient. For this example our use

� A patient will be referred to Palliative

� An appointment will be set with a physician for the patient.

� Physician will consult with the patient.

� Physician will decide if the patient is appropriate for the program or not

� If the patient is not appropriate s/he will be Refused with an explanation

� Otherwise the patient will be registered.

� A team will be made with different caregivers for the registered patient.

 N O V A W o r k F l o w 0 . 1

A demo application is available in CLI website which shows the functionalities of NOVA

WorkFlow. You can download it from http://logic.stfx.ca/novaflow/pc_demo.html

i) Server side application including workflows, ii) client side application

which is an eclipse RCP application. The webapp directory contains all required files that you

b container. One could use other technologies like

JSP/Struts/JSF/Others for the client side application.

PC_Demo application is a small workflow of healthcare system. A patient is referred by

community care to palliative care program, where s/he consults with a physician and get

registered to the program. Once registered a team consisting of formal and informal caregiver

For this example our use-case is as follows

A patient will be referred to Palliative-Care program.

n appointment will be set with a physician for the patient.

Physician will consult with the patient.

Physician will decide if the patient is appropriate for the program or not

If the patient is not appropriate s/he will be Refused with an explanation

wise the patient will be registered.

A team will be made with different caregivers for the registered patient.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

A demo application is available in CLI website which shows the functionalities of NOVA

ovaflow/pc_demo.html. The demo

i) Server side application including workflows, ii) client side application

which is an eclipse RCP application. The webapp directory contains all required files that you

b container. One could use other technologies like

PC_Demo application is a small workflow of healthcare system. A patient is referred by

e consults with a physician and get

registered to the program. Once registered a team consisting of formal and informal caregiver

Physician will decide if the patient is appropriate for the program or not

If the patient is not appropriate s/he will be Refused with an explanation

A team will be made with different caregivers for the registered patient.

43 | P a g e

Workflows in pc_demo

There are two workflows in pc_demo named Ovreall and TeamBuilding. Overall is the Root net

and TeamBuilding is a true compensable net.

Fig5.1 Overall workflow of pc_demo

Fig5.2 TeamBuilding workflow of pc_demo

 N O V A W o r k F l o w 0 . 1

There are two workflows in pc_demo named Ovreall and TeamBuilding. Overall is the Root net

pensable net. Fig5.1 and 5.2 shows the workflow models.

Fig5.1 Overall workflow of pc_demo

Fig5.2 TeamBuilding workflow of pc_demo

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

There are two workflows in pc_demo named Ovreall and TeamBuilding. Overall is the Root net

Fig5.1 and 5.2 shows the workflow models.

44 | P a g e

How to run

Create a database from the script provided in the

ant-script and the hibernate mapping files

information to the applicationContext.xml.

To start your client application, import the project into eclipse.

application from eclipse or you can build it as RCP product then run.

To build/run the pc_demo client application, make sure that your eclipse

installation has RCP development environment.

What you will see

Play with the application

Create a workflow instance. The engine will persist a new workflow instance to database. To

view the available tasks of an instance open WorkList view in your client application.

show all active instances in a drop down.

active tasks of the instance.

 N O V A W o r k F l o w 0 . 1

Create a database from the script provided in the demo_app, or you can create tables using

hibernate mapping files. Run your database server and provide the

information to the applicationContext.xml. Deploy the webapp to your web container.

To start your client application, import the project into eclipse. You can either launch

on from eclipse or you can build it as RCP product then run.

To build/run the pc_demo client application, make sure that your eclipse

installation has RCP development environment.

Fig5.3: pc_demo client application

reate a workflow instance. The engine will persist a new workflow instance to database. To

view the available tasks of an instance open WorkList view in your client application.

show all active instances in a drop down. Select an instance from the drop down to see the

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

, or you can create tables using

. Run your database server and provide the

to your web container.

launch the

To build/run the pc_demo client application, make sure that your eclipse

reate a workflow instance. The engine will persist a new workflow instance to database. To

view the available tasks of an instance open WorkList view in your client application. It will

Select an instance from the drop down to see the

45 | P a g e

What you will see

If you select a task from the worklist, its view (form) will be opened where you c

information and execute the task.

What you will see

 N O V A W o r k F l o w 0 . 1

Fig5.4: WorkList view of pc_demo client application

If you select a task from the worklist, its view (form) will be opened where you c

information and execute the task.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

pc_demo client application

If you select a task from the worklist, its view (form) will be opened where you can insert

46 | P a g e

Some tasks are not part of this patient’s

service. There can be a different workflow for managing the resources, but in this

simply done by accessing PhysicianService

 N O V A W o r k F l o w 0 . 1

Fig5.5: Referral form of pc_demo client application

patient’s workflow, for example registering a physician or home

different workflow for managing the resources, but in this

PhysicianService service bean.

NOVANOVANOVANOVA

WorkFlow

N O V A W o r k F l o w 0 . 1

: Referral form of pc_demo client application

workflow, for example registering a physician or home

different workflow for managing the resources, but in this demo_app its

